ASLan++ — A formal security specification
language for distributed systems

David von Oheimb! and Sebastian Mddersheim?

! Siemens Corporate Technology, IT Security, Munich, Germany,
David.von.Oheimb@siemens.com, ddvo.net
2 DTU Informatics, Technical University of Denmark, Lyngby, Denmark
samo@imm.dtu.dk, imm.dtu.dk/~samo

Abstract. This paper introduces ASLan++, the AVANTSSAR Spec-
ification Language. ASLan++ has been designed for formally specify-
ing dynamically composed security-sensitive web services and service-
oriented architectures, their associated security policies, as well as their
security properties, at both communication and application level.

We introduce the main concepts of ASLan++ at a small but very instruc-
tive running example, abstracted form a company intranet scenario, that
features non-linear and inter-dependent workflows, communication secu-
rity at different abstraction levels including an explicit credentials-based
authentication mechanism, dynamic access control policies, and the re-
lated security goals. This demonstrates the flexibility and expressiveness
of the language, and that the resulting models are logically adequate,
while on the other hand they are clear to read and feasible to construct
for system designers who are not experts in formal methods.

Keywords: services, security, specification language, formal analysis

1 Introduction

Formal Security Analysis. Security in distributed systems such as web ser-
vices and SOA is very difficult to achieve, because often the security problems
are very subtle. Even systems that are simple to describe (such as the famous
three-line Needham-Schroeder Public Key protocol) may have weaknesses that
go unnoticed for years even when the system has been carefully studied [9)].
Formal specification and verification of such systems can help to uncover weak-
nesses before they can be actually exploited. Especially automated verification
tools can help to find the needle in the haystack — one trace of the system that
violates the security goals among an enormous number of traces that are fine.
Over the last decade, formal verification for security has made a lot of
progress. In the late 90s, automated protocol verification tools began to emerge
that focussed on simple security protocols that can be described by an exchange
of messages (e.g., in Alice&Bob-style notation). Despite being small systems,
their verification is very challenging, in particular considering that an intruder


ddvo.net
imm.dtu.dk/~samo

has an unbounded choice in constructing messages, which may involve algebraic
properties of the cryptographic primitives. Moreover one cannot give a bound
on the number of sessions that can be executed in parallel. These problems are
now well understood, both theoretically in terms of complexity and decidabil-
ity [21,12,15], and in terms of methods and tools that are practically feasible
automated verification [8,1,13,16].

Limitations of Security Protocol Analysis. The focus of simple security
protocols is however quite limited, ignoring a lot of aspects that play a crucial
role in distributed systems and that often are relevant for security.

The first very common aspect that falls out of the simple structure of security
protocols is non-linear communication. For instance, a (web-) server typically
listens for requests that must be in one of several types of formats; depending on
the request, the server will start an appropriate workflow, possibly contacting
other servers that implement subtasks of the workflow, and then finally give a
response to client who sent the initial request.

This brings us immediately to a second aspect: the described transaction may
sometimes not be independent from all other transactions, but for instance may
be related via dynamic distributed state. For instance, in case of an online shop,
a database maintained by the server may contain the set of all processed orders
and their status, the set of all registered customers, and other related informa-
tion. Processing different requests may depend on this database, for instance a
registered user can send a request to see all her recent orders — provided the
user can authenticate herself by username and password or maybe by a cookie.
Another subsequent request could then be to cancel or change an order that has
not yet been shipped. These aspects are completely outside the realm of simple
security protocols where different sessions are essentially independent and the
only information shared between different sessions are static long-term keys.

A third important aspect concerns the relation to dynamic security policies.
For example, when a server receives a request from a client to access a resource
it controls, it may need to check whether the particular client has the necessary
access rights. These access rights may not be static but may for instance depend
on who is a member of the group that owns a particular resource, and these
memberships may change over the time. The change of group memberships may
itself be transactions of the system that is again governed by some access control
policies, e.g., only members of a certain role, say manager, are authorized to
change group memberships.

AVANTSSAR and its Specification Language. The EU-funded Project
AVANTSSAR has been concerned with developing a formal specification lan-
guage and automated verification methods and tools to handle systems at de-
sign level in which all these three aspects are relevant: non-linear work-flow,
relationships between workflows (for instance via databases), and access control
policies. In this paper, we describe the AVANTSSAR Specification Language



ASLan++ [4], which has been developed as a joint effort by the partners of the
project. The design goal of ASLan++ were

1. expressiveness sufficient to describe the security-relevant aspects of service-
oriented architectures as described above,

2. ease of use for systems designers, in particular being close to the way design-
ers think about and describe such systems, allowing to abstract from details
whenever they are not relevant or can be “factored out”,

3. compatibility with existing and emerging verification methods so that au-
tomatically analyzing specifications is feasible at least for small number of
parallel processes, without being biased to a particular method.

Structure of this Paper. In this paper, we discuss the main concepts of
ASLan++ and how they can be used for modeling the most relevant aspects of
service-oriented architectures. We also briefly discuss the rationale behind some
design decisions and some consequences for the verification methods, drawing in
particular from our experience in modeling a number of larger case studies.

For introducing ASLan++4-, we employ a small but very instructive running
example specification. Its full text may be found in the appendix, while in the fol-
lowing sections we describe it piece-by-piece, progressing from basic structuring
of the specification over its procedural aspects to security policies, communica-
tion properties, and security goals.

The example describes part of a company intranet scenario. Employees may
access files according to a dynamic access control policy. A central server keeps
track of the access rights. Both managers and employees can influence the policy.

2 Specification Structure and Execution

2.1 Specifications

An ASLan-++ specification of a system and its security goals consists of a hi-
erarchy of entities. An entity may import other entities contained in separate
files, which in turn contain a hierarchy of entity declarations. The top-level en-
tity, usually called Environment, serves as the global root of the system being
specified, similarly to the “main” procedure of a program. In our example spec-
ification, the Environment has two sub-entities: Session and Employee, where
the former has in turn two sub-entities: Server and Manager. The Manager en-
tity, for example, is used to describe the behavior of any honest manager as well
as the security requirements that can be stated from her perspective.

2.2 Entities and agents

Entities are the major ASLan++ building blocks, which are similar to classes in
Java or roles in HLPSL [10] and other security protocol specification languages.
Entities are a collection of declarations and behavior descriptions. They can have
parameters and local variables, with the usual nested scoping w.r.t. sub-entities.



Entities are like blueprints that can be instantiated to any number of pro-
cesses (or threads), each executing the body of the entity. With the exception of
sets, the parameters of an entity have call-by-value semantics: the entity obtains
a copy of the values and may change them without side-effects for the “calling”
process. On the other hand, one can easily model shared data [4, §2.4].

Each entity has an explicit or implicit formal parameter Actor, which is
similar to this or self in object-oriented programming languages. The value
of Actor is the name of the agent playing the role defined by the entity. This is
important for defining the security properties of the entity.

The entity and instance structure of our example is as follows, where entity
and variable names are uppercase, while constant and type names are lower-case.
ASLan++ comments start with a “%” symbol and extend until end of the line.

entity Environment {
entity Session (M, S: agent) {
entity Server (M, Actor: agent) {

}
entity Manager (Actor, S: agent) {

}
body { % of Session

new Server (M,S);
new Manager (M,S);
}
}
entity Employee (Actor, S: agent) {
}
body { % of Environment
any M. Session(M,centralServer);
new Employee(el,centralServer);
new Employee(e2,centralServer);

}
}

There is (at least) one instance of entity Session, each invoked by a statement
any M. Session(M,centralServer) (described later). It has two formal pa-
rameters (of type agent): M refers to the agent playing the manager role, while
S holds the name of the server. Each session launches in parallel a thread of the
Server and a Manager instance, by statements like new Manager (M,S). The
session(s) runs in parallel with two (or more) Employee instances.

The Manager entity has two parameters: Actor is used to refer to herself,
while S holds the name of the server she is going to interact with. The parameters
of the Employee entity are analogous to Manager.

Instances of the Server entity will actually obtain the name of the manager
via the manager’s messages described below. Still, for the sake of relating entities
for the security goals, we need to give M, the variable that will hold the manager’s
agent name, as a formal parameter of Server. The other parameter of Server
is, as usual, the Actor.



Note that while each instance of Manager and Employee (typically) has a dif-
ferent agent playing the respective role, for example referred to by the constants
el and e2 used for employees, there is just a single constant centralServer used
as actor of the Server entity. This is how we model that the server is global.

2.3 Execution Model

The instantiation of an entity is in parallel: the caller starts a new process that
runs in parallel to the caller. A subtle point is the granularity at which paral-
lel processes can be interleaved. Consider that a web server may make quite a
number of intermediate computations between receiving a request and sending a
reply. Running in parallel with other processes (e.g., other instances of the same
server that currently serve a different request) produces an exponential number
of interleavings, which is difficult to handle for many verification methods. There
is also a number of classical problems attached, e.g., if we think of a two threads
of the server checking and modifying the database, this can easily lead to race
conditions. For ASLan++ we have chosen a particular way to deal with interleav-
ings. Whenever an entity receives a message and then acts upon that, we consider
its subsequent activity atomic up to the point where the entity goes back into
a state of waiting for further messages. The reason is quite pragmatic: we get a
coarse interleaving model that is feasible for verification tools without the user
having to code tool-related optimizations into the specification (i.e., declaring
atomicity-blocks to help the tools). At the same time, this can be regarded as a
reasonable model for many situations: when the server’s computation is related
to a shared resource, e.g., reading from a database and then writing a change
into the database, it is clear that in the implementation that process should
get a lock on the server so that other processes do not change the database in
between. ASLan++ thus allows to abstract from such locking mechanisms, and
in fact they are often not the focus of a security verification. However, if desired,
ASLan++ also allows to declare “custom breakpoints” (overriding the default
atomicity behavior) to model a finer interleaving model.

ASLan++ offers experimental support for constraints on the global system
run via LTL formulas, which may be used to specify e.g., fairness assumptions.

2.4 Dishonest agents and the intruder

The attacker is known as the intruder and can be referred to by the constant i
(of type agent). Yet we allow the intruder to have more than one “real name”.?
To this end, we use the predicate dishonest that holds true of i and of every

pseudonym (i.e., alias name) A of i.

3 The intruder may have several names that he controls. This reflects a large number
of situations, like an honest agent who has been compromised and whose long-term
keys have been learned by the intruder, or when there are several dishonest agents
who collaborate. This worst case of a collaboration of all dishonest agents may be
simply modeled by one intruder who acts under different identities.



As long as the actual value of the Actor parameter of an entity is an honest
agent, the agent faithfully plays the role defined by the entity. If the Actor
parameter value is dishonest already on instantiation of the entity, which is
typically the case for some of the possibilities included in symbolic sessions (cf.
2.6), the body of the entity is ignored because the intruder behavior subsumes
all honest and dishonest behavior.

We also allow that an entity instance gets compromised later, that is, the
hitherto honest agent denoted by the Actor of the entity becomes dishonest.
Once an agent has become dishonest, for instance because it has been corrupted,
it can never become honest again.

2.5 Declarations

An entity may contain declarations of types, variables, constants, functions,
macros, (Horn) clauses, and algebraic equations.

Unless declared non-public, constants and functions are public, such that the
intruder knows them and thus may (ab-)use them. Moreover, function symbols
are by default interpreted in the free term algebra (modulo algebraic equations),
such that they are by default invertible in each argument. This conveniently
reflects the typical behavior of message constructors, like the ones declared in
our example:

login (agent,symmetric_key): message;

changeGroup (agent,agent set,agent set): message;
assignDeputy (agent): message;
requestAccess(file): message;

grantedAccess (file): message;
deniedAccess (file): message;

where the types in parentheses specify their argument types.

Message constructors abstract from the actual implementation details of how
messages are actually encoded. Essentially the only property we rely on is their
invertibility, such that e.g., the intruder may obtain A, G1, and G2 from knowing
changeGroup (A,G1,G2). Since often a function application term is better read-
able when the first argument is written before the function symbol, ASLan++
offers syntactic sugar for this, such that we can equivalently write in “object-
oriented style”: A->changeGroup(G1,G2). The message constructors just men-
tioned, as well as the remaining symbols declared in the global symbols section,
will be described in more detail below where appropriate.

Types may have subtypes, e.g., the (built-in) relation agent < message
means that any value of type agent may be used in a context where a value of
type message is expected. The type message includes all those values that may
be sent over the network, in particular concatenation M1.M2 and tuples (M1,M2)
of sub-messages M1 and M2. For “atomic” values in messages, one may use the
subtype text, which may be dealt with more efficiently during model-checking.
For instance, we declare an abstract type of files (or better: file identifiers) as

types
file < text;



Sets, which are passed by reference, are not a subtype of message, such that
they cannot be directly sent as messages. * Sets and tuples have parameters for
their element types, e.g., nat set and agent * message).

Symbols may also be declared in the respective sections of the various entities,
in particular the local variables that their instances use internally. For instance,
both Manager and Server declare

symbols
Cookie: cookie;

where cookie is a subtype of text.

2.6 Statements

Statements may be the usual assignments, branches and loops, but also non-
deterministic selections, assertions, generation of fresh values and of new entity
instances, transmission of messages (i.e., send and receive operations), and in-
troduction or retraction of facts, which represent state-dependent truth values.

The select statement is typically used within the main loop of a server, as
it is the case in our example for the Server entity:

body {
while (true) {
select {
on(... & ... ): {

}
on(?A *->% Actor: requestAccess(?F)): {

}
}
}
}

Such a statement handles a variety of potential incoming requests or other events
such as timeouts. It checks the guards given, blocking as long as no guard is
fulfilled, then nondeterministically chooses any one of the fulfilled guards and
executes the corresponding statement block. The evaluation of the chosen guard
assign variables that are written with the ? symbol before their name. For in-
stance, the guard

on(?A *->* Actor: requestAccess(?F)): { ... }

(where in this context the decorated arrow symbol *->* denotes a communica-
tion channel with certain properties, as we will describe in section 4) can fire
when a requestAccess message has been received from any authenticated agent
A for any file F. When this guard is chosen, the values of these two variables are
set according to the actual values received. Then in response the compound
statement enclosed by the brackets { ... } is executed.

Entity generation, introduced by the keyword new or any, instantiates sub-
entities. This is only allowed for direct sub-entities, such that static and dynamic

* In [4, §2.5], we describe several possibilities to communicate sets.



scoping coincide. In our example, the Session entity creates new instances of
the server and the Manager entity:

new Server (M,S);

new Manager (M,S);
These run in parallel and in this case happen to obtain on creation the same
actual parameter values, M and S.

Symbolic entity generations, introduced by any, are a convenient shorthand
for loosely instantiating an entity, in the following sense: the bound parameters
of the entity, as indicated by the given list of variables, allows to explore all
possible values, from the domain of their type (which may be any subtype of
message). An optional guard, which may refer to the variables listed, constrains
the selection. This mechanism is typically used to produce so-called symbolic
sessions, where the bound variables range over type agent, such that (unless
further constraints exist) their values include i, the name of the intruder.

In our example, we symbolically instantiate the Session entity by

any M. Session(M, centralServer);

Note that since we did not constrain the agent value for M, it may be in fact the
intruder. The model checkers will use this freedom to look for attacks for both
honest and dishonest instantiations for M.

2.7 Terms

Terms may contain variables (e.g., A), constants (e.g., el), and function appli-
cations (to be more precise: function symbols applied to first-order terms, e.g.,
requestAccess(F)) including infix right-associative message concatenation, e.g
M1.M2) and tupeling (e.g., (A,b2,0)). Set literals are written as usual (e.g.,
{A,B,C}), while the basic operator on sets is the contains function, where the
presence of the fact Set->contains(X) means that X is a member of Set.

3 Policies and Transitions

ASLan++ provides an extremely powerful way to specify security policies and
their interaction with the dynamic system defined by the entities given in the
specification. For simplicity, let us refer to the latter system in the following
simply as the transition system. Policies are specified by a set of Horn clauses,
e.g., stating that a person can get access to some resource if certain conditions
are met. In our running example, there are only two such rules:

clauses
accessDirect (A,G,F): A->canAccess(F) :- G->isOwner(F) & G->contains(A);
accessDeputy (A,B,F): A->canAccess(F) :- A->deputy0f(B) & B->canAccess(F);

These rules make use of the following user-declared predicate symbols:

canAccess (agent ,file): fact;
isOwner (agent set,file): fact;
deputy0f (agent ,agent): fact;



3.1 Predicates and Facts

Instead of the usual type bool for truth values, ASLan++ uses the type fact.
Terms denoting atomic propositions, generally knows as predicates, are repre-
sented by functions with result type fact. The question whether an atomic
proposition holds or not is expressed by the (non-)existence the respective pred-
icate term in a global “fact space”. Facts may be combined with the usual logical
operators in LTL formulas to express goals, and they are also used in conditions
(in if, while, and select statements) known as guards.

By default a fact does not hold, but it may be explicitly introduced (simply
by writing it as an ASLan++ statement) and retracted. The constant true is
introduced automatically, while the constant false is never introduced. Facts
may also be generated by Horn clauses, as described next.

3.2 Horn clauses

The first above rule says that an agent A can access a file F' if A is a member
of a group G that is the owner of F. The second rule says that A can access
file F' if A is a deputy of another agent B who has access to F'. Note that it
is only for the sake of simplicity of the example that this latter rule models a
“complete delegation” of all access rights while most real systems would make
more fine-grained delegations.

The symbols A, B, G, F' are variables that can be instantiated with arbitrary
values and hence are regarded as “parameters” of the rules; this allows in the
output of (attack) traces to clearly announce which rule with which values of the
parameters had been applied. Note that the second rule is “recursive”: if A is
the deputy of B and B is the deputy of C, then A also gets access to everything
that C has access to — and such a line of deputies can be extended ad libitum,
implying delegation of access rights along this line.

It is important to see that these rules are positive formulations of access con-
trol conditions: A gets access to a file F' if and only if there is some way to derive
A->canAccess (F) with the Horn clauses. We do not allow negative formulations
such as “A does not get access if ...”. This has the advantage that ASLan+-+
policies can never be inconsistent in the sense that one rule allows access while
another one would deny it. The price that we pay for this is that it is harder
in ASLan++ to formulate a higher-level policy that overrides the judgements
of a lower level policies; we discuss this below. Observe that by allowing arbi-
trary definite first-order logic Horn clauses, this alone gives a Turing-complete
programming language (namely a subset of Prolog). ® This expressivity implies
that derivability in ASLan-++ policies is in general undecidable. There are several
ways to restrict this concept to decidable fragments, e.g., allowing only primi-
tive recursion. It was part of the language design of ASLan++ not to commit
to such a particular restricted fragment, which may be specific to a verification

® There is even some (experimental, so far) support for (in-)equalities as side conditions
on the right-hand side of clauses.



10

method. Our method thereby allows to formulate policies in very different ways,
e.g., SecPAL and DKAL policies [6,18] can be specified.

It is crucial to first distinguish two kinds of facts, namely the state facts:
those explicitly introduced by the transition system, and policy facts: those more
implicitly “generated” by Horn clauses. In our example, canAccess is the only
policy fact, because it is the only fact that can be produced by the policy rules.
All the other facts are state facts. We will come back why we must insist on this
distinction.

3.3 Policy Interaction

There are now two ways how the policies can interact with the transition system
that we describe by the ASLan++ entity specifications and their instantiations.

First, transitions of an entity can depend on the judgement of policies. For our
example, consider the transaction where an authenticated user requests access
to a file: the server governing file access should first check whether the policy
actually allows this user access to the requested file. Here is the code snippet of
the server’s behavior (thus Actor is centralServer here):

on(?A *->* Actor: requestAccess(?7F)): {
if (A->canAccess (F))
Actor *->* A: grantedAccess(F);
else

Actor *->% A: deniedAccess(F);

}

The response of the server, either grantedAccess(F) or deniedAccess(F), de-
pends on whether A->canAccess (F) holds, which is determined by the two Horn
clauses as explained above.

The second way that policies can interact with the transition system is just
the other way around: the transition system can generate and retract state facts
on which the Horn clauses depend. For instance, there can be transitions that
change who is the owner of a file, or who is member of which group or who is
deputy of whom, and this has an immediate effect on the access rights via the
rules. In our example, let us consider that a manager M can tell the server that
a certain employee A changes from a group G to a group Ga, so that the server
updates the group membership information. Here is the code snippet from the
point of view of the server (i.e., Actor):

on(M *->x Actor: (?A->changeGroup(?G1,7G2)) & 7Gl->contains(?7A)): {
retract (Gl->contains (A));

G2->contains (A);

}
Like with the messages sent by an employee, here the manager’s command is
transmitted on a secure channel (including authentication of the manager), and
again the command is abstracted into the message constructor changeGroup that
has the relevant information (the agent A that changes group, and the source
and destination group) as parameters. The server just retracts the fact that A
is a member of G; and introduces the fact that Go now contains A. Note the
command is simply ignored if A is not a member of group G; at the time the



11

command is received; in a more detailed model, one would include a feedback
message (whether the command was accepted or not) to the manager.

3.4 Concrete Policy Example

Let us consider the consequences of the transition just described for our policy.
For concreteness, let us consider a state where we have a manager mq, three
employees ej,e; and ez, and two groups g1 = {e1,e2} and go = {es}. Con-
sider moreover files f1, fo, where group g; owns file f;, and that initially there
are no deputy relations. All this is formulated by the following contents of the
Environment declaration:

symbols % for the concrete access examples
ml: agent;
el, e2, e3: agent;
gl, g2: agent set;
f1, £2: file;

body { % of Environment
% for the concrete access examples:
ml->isManager;
gl->contains(el); gl->contains(e2);
g2->contains (e3);
gl->isOwner (f1);
g2->isOwner (£2);

}

By our access control rules, e; and es can access f; and ez can access fs.

When a manager successfully issues the command e1->changeGroup(gl,g2),
this implies that e; looses her or his access to f; but gains access to fs. Thus,
the access rights are obtained as the least closure of the state facts under the
policy rules: everything that can be derived from the current state by the policy
is true, everything else is false.

To illustrate the effects of state transitions to the policy in more depth, let
us consider another transaction where A assigns B as her deputy:

on(?A *->* Actor: assignDeputy(?B)): {
B->deputy0f (A);
}

Consider that in this way e; becomes deputy of es while both are still in group
g1. If the transfer of e; from group g; to go is performed in this situation, e;
gets access to fa, but it does not loose the access to fi. This is because access
to fy is still derivable through the deputy relation: e; has access to everything
that ey has access to (via the second policy rule), and ey is still a member of g;
and thus has direct access to f1 (via the first policy rule).

This illustrates how expressive the combination of transitions and policies
actually is. In particular, there can be several independent reasons why an agent
has access to a particular resource. Each of these reasons can change dynami-
cally when people enter or leave groups, become deputies of others or stop being
deputies. If one reason for access is removed by a transition, but another reason
remains, then also the access right remains. Once all reasons are removed, also



12

the access right is gone. In the previous example, if e; stops being deputy of e
(say, because e returns from vacation, which can be modeled by a straightfor-
ward revokeDeputy command) then with that also the reason for access to fi
is removed, and since no other reason is left, e; no longer has access to fi.

3.5 Meta Policies

Of course this example has been deliberately kept simple, but let us now review
briefly how certain more complex aspects can be modeled. One may model the
hierarchical structure in a company and model that one inherits the access rights
of one’s subordinates:

accessSuperior (A,B,F): A->canAccess(F) :- A->superior0f(B) & B->canAccess(F);
superiorDirect (A,B) : A->superior0f(B):- A->manager0f (B);

superiorTrans (A,B,C): A->superior0f(C):- A->superior0f(B) & B->superior0f(C);
This shows a different application of the Policy/Horn clauses: mathematically
speaking, we define the relation superior0f as the transitive closure of the
managerOf relation. Intuitively, manager0f gives the direct superior and is a
relation controlled by the transition system just like the other state facts like
deputyOf etc.; while superior0f yields all superiors over any number of hi-
erarchy levels, and this is “immediately computed” depending on the state of
manager0Of.

This example of “superiors can access everything that their subordinates can
access” can be regarded as a meta policy, i.e., actually a policy about policies
or giving boundaries to policies. This is increasingly important because policies
may be expressed (formally) at different levels, e.g., there may be policies at the
level of workgroups or divisions of a company, or at the level of the company
itself, or on top of that policies required by governmental law.

We have just seen an example of a positive top-level policy, which is easy
to integrate. More difficult are negative top-level policies. Take the following
negative meta policy as an example: one cannot assign a deputy outside one’s
own group. This aims at preventing the situation in the above example where
ey still has access to a file of his old group because he is deputy of an old group
member ey. We cannot directly formulate such negative conditions in the Horn
clauses of ASLan+-+, but we could code it indirectly into the transition for
assigning deputies:
on(?A *->x Actor: assignDeputy(?B) & ?G->contains(?A) & 7G->contains(?B)): {

B->deputy0f (4);

}

Here the first condition G->contains(A) determines one group ?G that A is
member of — in fact we have not explicitly enforced that every agent is member
of at most one group — and the second condition requires that the to-be-assigned
deputy B is also member of the same group G. However, this only enforces that
at the moment of deputy assignment, A and B are member of one common
group, and in fact the high-level policy is violated as soon A or B change to
another group while the deputy relation is in place. In fact a real system may
be built like this and have the weakness that the meta policy is not checked



13

when people change groups. We thus see it as a strength of ASLan++ that such
systems (with all their flaws) can be modeled and the problem be discovered by
automated verification.

To formalize a system that realizes the deputy-in-same-group meta policy (no
matter how), the easiest way is to actually allow in the model deputies outside
the group, but to enforce the same-group constraints whenever access is granted
on grounds of the deputy relation, i.e., refining our original accessDeputy rule:

accessDeputy (A,B,F,G) : A->canAccess(F) :- A->deputy0f(B) & B->canAccess(F)
& G->contains(A) & G->contains (B);
If there are other decision made based on the deputyOf relation, they would
have to be refined similarly.

4 Channels

A very typical aspect of the systems we model in ASLan++ is that they are
distributed and communicate over (initially) insecure channels that could be
accessible to an intruder who may read, intercept, insert and modify messages.
It is also common to secure the communication lines by protocols like TLS or
IPSec and thereby obtain a virtual private network, i.e., as if the distributed
components were directly connected by secure lines.

4.1 Abstraction Levels

ASLan++ is of course expressive enough to directly model protocols like TLS
and IPSec, using the classical cryptographic primitives for encryption and digital
signatures, but this is not really desirable: one should not model large systems
monolithically and in all detail, but, whenever possible, distinguish different
layers and components in a system. This approach entails to verify high-level
applications that are run over secure channels independently of the low-level
protocol that provides these channels. This gives also greater significance to
the verification result: the application is then secure even when exchanging the
low-level secure channel protocol. Vice-versa, the channel protocol should be
verified independently of a concrete application, so that it can be used for other
applications as well. There are first results for such compositional reasoning for
channels [20,11].

ASLan++ supports an abstract notion of channels where we simply state
that messages are transmitted under certain assumed security properties. We
have already seen examples above:

?A *->*% Actor: requestAccess (?7F)

The stars mean that the respective side of the channel is protected. Protection
on the receiver side means confidentiality: it can only be received by the intended
receiver. Protection on the sender side means authentication: it is certain that
the message indeed comes from the claimed sender. Authentication also includes
that the intended recipient is part of what is being authenticated; so the receiver



14

can see whether this message was really intended for him (even though everybody
can read it when confidentiality is not stipulated). This follows the definition of
the cryptographic channel model (CCM) and the ideal channel model (ICM) pre-
sented in [20]. There is an alternative notation supporting the abstract channel
model (ACM) of [2]; we leave this out here for lack of space and also because
the integration into ASLan++ is not finished at the state of this writing. Much
more detail on the three channel models may be found e.g., in [4, §3.8].

The channels we have in our little example only ensure confidentiality and
authenticity /integrity, they do not incorporate other properties such as recent-
ness (which can be achieved using the ->>), disambiguation of different channels
between the same principals (which can be achieved by including distinguishing
channel/session identifiers in the messages) or the ordering of messages (which
can be achieved by including sequence numbers). For details on these aspects of
channel modeling we refer to [4, §2.9].

4.2 Client Authentication

We do want to illustrate however one very common situation in modeling chan-
nels: one side may not be authenticated. The most typical example is TLS where
usually the server possesses a certificate, but the client does not. One may model
this situation by declaring transmissions from client to server as being only con-
fidential (but not authentic) and transmissions from server to client as only
authentic (but not confidential). However, TLS with an unauthenticated client
provides actually more security guarantees, namely sender and receiver invari-
ance for the client: even though the client’s request is not authenticated, the
response from the server is sure to go only to that client who posed the request,
and subsequent requests can be associated to the same client. [20] suggests re-
garding this as a secure channel except that the client is not authenticated by
its real name but by a self-chosen pseudonym. We denote this such a channel in
ASLan++ as [Client]_[Pseudonym] *->* Server.

Such unilaterally authenticated channels are of high relevance in practice for
many applications, such as transmitting authentication information of the client
like passwords or cookies to the server. In this case, the server can definitely link
the pseudonym to the client’s real name. If we wish to just abstract from the TLS
channel, but not from the authentication mechanism that is run over the channel,
then the pseudonymous channel notation of ASLan+4 gives us the possibility
to do so. Let us consider for that reason a refinement of our previous example.
Before, we used a secure channel between a Manager M and the server S. Let
us now model that M has a TLS channel to S where M is not authenticated. As
a first step, the manager would send a login with his name and password. The
password we model as symmetric key which is a function of M and S:

nonpublic noninvertible password(agent,agent): symmetric_key;
Here, nonpublic means that no agent itself can apply the password function, one

can only initially know passwords or learn them during a message transmission.
Similarly noninvertible means that one cannot obtain the agent names from



15

a given password. We ignore here bad passwords, but we explicitly allow the
intruder to have its own password with S, namely password(i,S), which is
initially known to the intruder.

We model that when a manager logs in to the server (here the Actor) over
the pseudonymous channel [?M]_[?MP] *->* Actor, the server creates a cookie
for that manager, sends it back on the pseudonymous channel, and stores the
cookie, along with the manager’s identity, in a cookie database:

on ([?M]_[?MP] #*->% Actor: login(?M,password(?M,Actor)) & ?M->isManager): {
Cookie := fresh();
cookies (Actor)->contains ((M,Cookie));
Actor *->x [M]_[MP]: Cookie;

}

Note that in all transactions involving a manager we write ?M and ?MP because
the identity of M and her pseudonym 7MP are learned by the server at this point.
This allows for modeling multiple managers. When a manager connects, stating
its own name M, the server requires an abstract login message that consists of
the user name M and password. After these have been verified, it makes sense to
check if M is indeed a manager, which we describe by the predicate isManager.
With the line Actor *->x [M]_[MP]: Cookie; we ensure that the cookie goes
to exactly the person who sent the login (the owner of the pseudonym M P which
is — hopefully — the manager). Note that this allows us to faithfully model also
the situation where an intruder has found out the password of a manager: in this
case he can now obtain also such a cookie (and use this cookie for subsequent
impersonation of the manager).
The cookie database is also worth discussing in more detail: we declare

nonpublic cookies(agent): agent*cookie set;

i.e., similar to the passwords, it is a function parameterized over agent names
— in this case the owner of the database. The cookie database simply consists
of a set of pairs of agent names and cookies.

We can now re-formulate the changeGroup action of the manager to run over
a pseudonymous channel, using a previously obtained cookie for authentication:

on([?M]_[?MP] *->% Actor: ?Cookie.(?A->changeGroup (?7G1,7G2))
& cookies(Actor)->contains ((?M,?Cookie)) & ?Gl->contains (?A)): {
retract (Gl->contains (A));
G2->contains (A);

}

Here the manager is authenticated by the cookie, which is looked up, in con-
junction with her name stored in the variable M, in the server’s cookie database
before granting the transaction. Again this is a faithful model of the real situa-
tion: we send a cookie over a TLS channel where the sender is not authenticated
— possibly even the pseudonym M P is not the same because a new TLS session
had been opened meanwhile. If for some reason the intruder has obtained such
a cookie, he can use it to impersonate the manager in such transactions.

This example illustrates how the channel notation can be used to model
different levels of granularity of our models: we can either completely abstract
from authentication mechanisms and right away use a secure channel, as we did



16

first, or we can just abstract from TLS but model a credential-based approach
like the above password/cookie mechanism. The abstraction has the advantage
that we fade out model details and make thus the specification easier to read and
work with, while a more detailed specification may allow to model more aspects
such as leaking passwords or cookies. Note that again such an intermediate
layer could also be addressed with compositional reasoning, i.e., specifying just
the credential-based system without concrete applications like changeGroup and
authentic transmission as a goal.

5 Security Goals

ASLan++ has been geared as a high-level input language for model checking
security aspects of distributed systems, and it is therefore crucial to offer a con-
venient, clear, and expressive way to formalize the desired security properties.
The most general way to describe a security property in ASLan++ is to use
a first-order temporal-logic formula, defining a set of traces G that satisfy the
security properties. An attack is then any trace that the system can show and
that is not contained in G. The logic that we use is an extension of LTL (linear
temporal logic); for brevity we refer to it simply as LTL. The propositional basis
are the ASLan++ facts, and we allow all the standard temporal operators from
LTL and first-order quantification. The currently available tools however sup-
port only fragments of this logic. First, all tools currently only support outermost
universal quantification. Second, OFMC and CL-AtSe support only safety prop-
erties, i.e. such that every attack manifests itself in a finite trace, while SATMC
also supports liveness properties. We do not support any properties that involve
multiple traces such as non-interference goals.

To make the specification of simple and common goals as convenient as pos-
sible, especially to user without a background in formal logic, we provide several
ways to specify goals. In particular we can formulate goals within an entity,
allowing to refer to all variables defined in this scope.

Invariants. Goals that should hold during the whole life of an entity instance
are stated in the goals section of the entity declaration. Properties expected
to hold globally during the overall system execution should be given in the
outermost entity.

For invariants, basically any LTL formula can be given. As an example, con-
sider the meta policy “one cannot have a deputy outside one’s own group” men-
tioned in 3.5:

goals
deputy_in_group: forall A B. []J(B->deputy0f (A) =>
(exists G. G->contains(A) & G->contains(B)));
where “[1” is the “globally” LTL operator. However this is outside the supported
fragment of all tools (due to the existential quantifier). Taking advantage of the
fact that in our model each employee is in exactly one group, which could be
specified and checked as a further invariant, we can re-phrase the formula as



17

forall A B G. [J(B->deputyOf(A) => (G->contains(A) => G->contains(B)))

As mentioned before, this goal is violated.

Assertions. An assertion is very similar to an invariant, except that it is in-
serted as a statement in the body of an entity and is expected to hold only at
the given point of execution of the current entity instance.

In our example, we can express the expectation that an employee is allowed
to access a certain file F using a very simple LTL formula:

assert can_access_file: Decision = grantedAccess(F);

Channel Goals. ASLan++ offers special support for conveniently specifying
the usual communication goals like confidentiality, authentication, and the like,
called channel goals. In our example, in order to state that a manager authen-
ticates to the server on her cookie when sending a changeGroup command, we
write

manager_auth:(_) M *-> S

In analogy to the syntax of message transmission, M denotes the sender and S
denotes the receiver of the transmission to which the goal refers. In between
them is a symbol for the kind of channel property, in this case “*->” indicating
sender authenticity. The goal name manager_auth is augmented with a param-
eter placeholder “(_)” to indicate that in sub-entities the goal name appears
again, in the form of a goal label, with a message term as its argument. Here,
the message term is Cookie.

This channel goal is stated, as usual, at the level of the Session entity and
pertains to those message transmissions in which the goal name manager_auth
re-appears. In our example, we write in the Manager entity:

[Actor]l*->* S: manager_auth:(Cookie).

(el->changeGroup (gl,g2));

and in the Server entity:

[?M] _[?MP] *->* Actor: manager_auth:(7Cookie).

(?A->changeGroup (?7G1,7G2))

The operational semantics of this goal is that whenever the server receives
?Cookie. (?A->changeGroup(?G1,7G2)) from any manager 7M, the agent de-
noted by M must have sent to the server the changeGroup command with the
same cookie value (as long as M is not the intruder legitimately playing the
manager’s role).

It is important to note that M’s value is determined dynamically here, de-
pending on the cookie just received. The side condition

cookies (Actor)->contains ((?M,?Cookie)) % actually learns M here!

models that the server looks up the name M in its database: it is the name that
was stored along with the cookie when the manager logged in. So the manager to
be authenticated is not determined statically by the initial value of the parameter
M of the Server.



18

Secrecy Goals. Very similarly to the channel goal just described, we state

shared_secret:(_) {M,S}

in the Session entity. Its interpretation is that the values annotated by the
respective goal labels in the sub-entities must be known only to the agents M and
S. In this case, the confidential value is the password that the manager uses for
logging in to the server. Therefore, we write in the Manager entity:

[Actor]l*->* S: login(Actor,shared_secret:(password(Actor,S)));

and in the Server entity:

on ([?M]_[?MP] *->x Actor: login(?M, ¥ actually learns M here!
shared_secret:(password (?M, Actor)))

The operational semantics is that after the manager or the server has processed
the value given as argument of the goal label shared_secret: (...), this value
must never show up in the knowledge of the intruder (as long as the intruder
does not legitimately play the role described by any of the two entities).

Confidential transmission of a value between two parties can also be stated
as a channel goal, but the secrecy goal is more general: it may be used to state
that the value is shared between more than two parties, and the confidential-
ity is meant to be persistent (unless the secrecy goal is retracted or modified
dynamically).

6 Conclusion

We have illustrated by means of an example how the major security-relevant
features of modern service-oriented architectures can be specified in ASLan+-,
in particular how to formulate non-linear and inter-dependent workflows, as well
as policies and related goals. We have shown how to selectively abstract from
communication aspects using secure channels, as well as pseudonymous channels
and password- or cookie-based authentication mechanisms. The specifications
are clear and readable for web service designers, and at the same time are on a
reasonable abstraction level to be feasible for automated verification tools such
as those of AVANTSSAR. For instance, the violation of the deputy_in_group
goal in our example is found by the CL-AtSe back-end in less than a second.

AVANTSSAR Case Studies and Tool Availability. While the running ex-
ample has been deliberately kept small and simple for presentation, this paper
reflects also our experiences in the AVANTSSAR project with real-world case
studies [3] from the areas of e-Government, e-Health, and e-Business. There,
ASLan++ similarly allows us to have well-structured, easy-to-read descriptions
of complex systems that can be effectively analyzed with the automated verifi-
cation tools of the AVANTSSAR platform within reasonable time (usually much
less than 1 hour CPU time). Both the case studies and the AVANTSSAR Tool,
including a convenient web interface, are available at www.avantssar.eu.


www.avantssar.eu

19

Related Work. There are a number of specification languages that have simi-
lar or overlapping aims. The closest ones are the high-level protocol specification
language HLPSL [10] and the low-level language IF of the predecessor project
AVISPA [5]. In fact, experience with these languages had much influence on the
ASLan++ design. The most crucial extensions w.r.t. HLPSL and IF are the
integration of Horn clauses and the notion of channels. Moreover, ASLan-+-+
is closer to a programming language than the more logic-oriented HLPSL and
the more low-level description of transition rules of IF. ASLan++ is automati-
cally translated to the more low-level language ASLan, which is an appropriate
extension of IF and serves as the input language of the model-checking tools.

In the area of policy specification languages, we are closest to SecPAL [6]
and DKAL [18] with their Horn clause specification style. their relation with a
transition system. Another, conceptually quite different approach is KLAIM [14],
which allows for specifying mobile processes where access control is formalized
using a capability-based type system. Despite the differences, the combination
of a policy aspect and a dynamic distributed system bears similar ideas and
we plan to investigate as part of future work whether the concepts of the two
languages could be connected.

A language focussing on the vertical architecture especially in web services is
Capito [17], this is however again built on relatively simple authentication pro-
tocols and is not related to the required compositionality results such as [20,11].

One of the pioneering verification frameworks for web services is the Tula-
Fale project [7], which in particular supports a convenient way to deal with the
details of the message formats such as SOAP. It is based on the verification
tool ProVerif [8] using abstraction methods, which represent the entire protocol
as a set of Horn clauses. A limitation of this approach is the monotonicity the
abstraction, which forbids for instance to model revocation of access rights. One
of our works aims to overcome this limitation while preserving the advantages
of abstract interpretation, namely the set-based abstraction approach [19]. It is
part of our future work to build a bridge from ASLan++ to that framework. This
bridge will consist not only in a translator from ASLan++ to a suitable input
language, but also of a mechanism to choose and refine appropriate abstractions.

Acknowledgments

The work presented in this paper was supported by the FP7-ICT-2007-1 Project
no. 216471, “AVANTSSAR: Automated Validation of Trust and Security of
Service-oriented Architectures”. We thank the anonymous reviewers for their
helpful comments.

References

1. A. Armando, D. A. Basin, Y. Boichut, Y. Chevalier, L. Compagna, J. Cuéllar, P. H.
Drielsma, P.-C. Héam, O. Kouchnarenko, J. Mantovani, S. Médersheim, D. von
Oheimb, M. Rusinowitch, J. Santiago, M. Turuani, L. Vigano, and L. Vigneron.



20

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

The AVISPA Tool for the Automated Validation of Internet Security Protocols
and Applications. In K. Etessami and S. K. Rajamani, editors, CAV, volume
3576 of Lecture Notes in Computer Science, pages 281-285. Springer, 2005. http:
//dx.doi.org/10.1007/11513988_27.

A. Armando, R. Carbone, and L. Compagna. LTL Model Checking for Security
Protocols. In Journal of Applied Non-Classical Logics, special issue on Logic and
Information Security, pages 403-429. Hermes Lavoisier, 2009.

AVANTSSAR. Deliverable 5.3: AVANTSSAR Library of validated problem cases.
www.avantssar.eu, 2010.

AVANTSSAR. Deliverable 2.3 (update): ASLan++ specification and tutorial. www.
avantssar.eu, 2011.

AVISPA Project. www.avispa-project.org.

M. Y. Becker, C. Fournet, and A. D. Gordon. Security Policy Assertion Language
(SecPAL). research.microsoft.com/en-us/projects/SecPAL/.

K. Bhargavan, C. Fournet, A. D. Gordon, and R. Pucella. Tulafale: A security tool
for web services. In Proc. 2nd FMCO, LNCS 3188, pages 197—222. Springer, 2003.
B. Blanchet. An efficient cryptographic protocol verifier based on prolog rules. In
Proceedings of CSFW’01, pages 82-96. IEEE Computer Society Press, 2001.

M. Burrows, M. Abadi, and R. Needham. A Logic of Authentication. ACM Trans-
actions on Computer Systems, 8(1):18-36, 1990.

Y. Chevalier, L. Compagna, J. Cuéllar, P. Hankes Drielsma, J. Mantovani,
S. Médersheim, and L. Vigneron. A High Level Protocol Specification Language
for Industrial Security-Sensitive Protocols. In Automated Software Engineering.
Proc. SAPS’04 Workshop, pages 193-205. Austrian Computer Society, 2004.

S. Ciobéaca and V. Cortier. Protocol composition for arbitrary primitives. In
Proceedings of CSF, pages 322-336, 2010.

H. Comon-Lundh and V. Cortier. New decidability results for fragments of first-
order logic and application to cryptographic protocols. Technical Report LSV-03-3,
Laboratoire Specification and Verification, ENS de Cachan, France, 2003.

C. Cremers. The Scyther Tool: Verification, falsification, and analysis of security
protocols. In CAV 2008, volume 5123/2008 of Lecture Notes in Computer Science,
pages 414—418. Springer, 2008.

R. De Nicola, G. Ferrari, and R. Pugliese. KLAIM: a kernel language for agents
interaction and mobility. IEEE TSE, 24(5):315-330, 1998.

N. Durgin, P. Lincoln, J. Mitchell, and A. Scedrov. Undecidability of bounded
security protocols. In Proceedings of the Workshop on Formal Methods and Security
Protocols, 1999.

S. Escobar, C. Meadows, and J. Meseguer. Maude-npa: Cryptographic protocol
analysis modulo equational properties. In FOSAD, pages 1-50, 2007.

H. Gao, F. Nielson, and H. R. Nielson. Protocol stacks for services. In Proc. of the
Workshop on Foundations of Computer Security (FCS), July 2009.

Y. Gurevich and I. Neeman. Distributed-Knowledge Authorization Language
(DKAL). research.microsoft.com/~gurevich/DKAL.htm.

S. Médersheim. Abstraction by Set-Membership—Verifying Security Protocols and
Web Services with Databases. In Proceedings of 17th CCS. ACM Press, 2010.

S. Médersheim and L. Vigano. The Open-source Fixed-point Model Checker for
Symbolic Analysis of Security Protocols. In Fosad 2007-2008-2009, LNCS 5705,
pages 166—194. Springer-Verlag, 2009.

M. Rusinowitch and M. Turuani. Protocol insecurity with finite number of sessions
is NP-complete. In CSFW, pages 174—. IEEE Computer Society, 2001.


http://dx.doi.org/10.1007/11513988_27
http://dx.doi.org/10.1007/11513988_27
www.avantssar.eu
www.avantssar.eu
www.avantssar.eu
www.avispa-project.org
research.microsoft.com/en-us/projects/SecPAL/
research.microsoft.com/~gurevich/DKAL.htm

21

ASLan++ specification example

specification example
channel_model CCM

entity Environment {

types
file < text;

% a group is an agent set
cookie < text;

symbols
login (agent,symmetric_key): message;
changeGroup (agent,agent set,agent set): message;
assignDeputy (agent): message;
requestAccess(file): message;
grantedAccess(file): message;
deniedAccess(file): message;

nonpublic noninvertible password(agent,agent): symmetric_key;
nonpublic cookies (agent): (agent * cookie) set;

% used by the Server to store cookies for managers

centralServer: agent;

isManager (agent ): fact;
canAccess (agent ,file): fact;
isOwner (agent set,file): fact;
deputy0f (agent ,agent): fact;
clauses
accessDirect (A,G,F): A->canAccess(F) :- G->isOwner(F) & G->contains(A);
accessDeputy (A,B,F): A->canAccess(F) :- A->deputy0f(B) & B->canAccess(F);

symbols % for the concrete access examples
ml: agent;
el, e2, e3: agent;
gl, g2: agent set;
f1, £2: file;

entity Session (M, S: agent) {

entity Server (M, Actor: agent) {
% Exercise for the reader: how to formulate this for a decentralized system?
% Hint: introduce either an additional argument (representing the P.o.V.) to
% all policy judgements, or a modality like "Server->knows(A->canAccess(F))".
symbols
MP: public_key; % pseudonym of a manager
A, B: agent;
G, G1, G2: agent set;
F: file;
Cookie: cookie;
body {
while (true) {
select {
on([?M]_[?MP] *->% Actor: login(?M, 7 actually learns M here!
shared_secret:(password (?M, Actor)))
& ?M->isManager): {
Cookie := fresh();
cookies (Actor)->contains ((M, Cookie));
Actor *->% [M]_[MP]: Cookie;

on([?M]_[?MP] #*->* Actor: manager_auth:(?Cookie).(?A->changeGroup(?7G1,7G2))
& cookies (Actor)->contains ((?M,?Cookie)) % actually learns M here!
& ?Gl->contains (7A4)): {
retract (G1->contains (A));
G2->contains (A);
}



22

on(?A *->* Actor: assignDeputy(?B) & 7?G->contains(?A) & ?G->contains(?7B)):
B->deputy0f (A);
}
on(?A *->x Actor: requestAccess(?F)): {
if (A->canAccess (F))
Actor *->* A: grantedAccess(F);

else
Actor *->* A: deniedAccess(F);
}
}
}
}
goals
deputy_in_group: forall A B G. [](B->deputyO0f (A) =>
(G->contains (A) => G->contains(B)));
}
entity Manager (Actor, S: agent) {
symbols
Cookie: cookie;
body {
[Actor]*->% S : login(Actor ,shared_secret:(password(Actor,S)));
S *=->*[Actor]: 7?7Cookie;
[Actor]l*->% S : manager_auth: (Cookie).
(el->changeGroup(gl,g2));
}
}

body { % of Session
iknows (password(i,S8)); % intruder knows its own password
new Server (M,S);
new Manager (M,S);

}
goals
shared_secret:(_) {M,S};
manager_auth :(_) M *-> §;
}
entity Employee(Actor, S: agent) {
symbols

F: file;
G: agent set;
Decision: message;
body {
if (Actor=el)
Actor *->* S: assignDeputy(e2);
% results in a meta policy violation if "el->changeGroup(gl,g2)" happens later!

% get any file currently owned by this employee
if (?G->contains (Actor) & ?G->isOwner (?F)) {

Actor *->x § : requestAccess (F);

% before the decision is received, access rights could have changed...
S *->x Actor: 7Decision;

assert can_access_file: Decision = grantedAccess(F);

}
}
}
body { % of Environment
% for the concrete access examples:
ml->isManager;
gl->contains(el); gl->contains(e2);
g2->contains (e3);
gl->isOwner (f1);
g2->isOwner (£2);

any M. Session(M,centralServer); % M may be dishonest!
new Employee(el,centralServer);
new Employee(e2,centralServer);

% new Employee(e3,centralServer);



	ASLan++ — A formal security specifiation language for distributed systems

