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Abstract. Geographic privacy services provide location information on
roaming targets to location recipients via location servers, in a way that
protects the privacy of the individuals involved. In this paper we pro-
pose and discuss new protocols representing the core of Geopriv, with
particular focus on the security requirements stated in the IETF’s RFC
3693. Using the AVISPA tool, we check that these requirements, namely
anonymity against the location server, as well as confidentiality, integrity,
and authenticity of the location information, are actually met. In the de-
sign phase of such protocols, numerous variants are to be considered and
evaluated. Here the use of model checkers turns out to be very helpful
in exploring the security implications quickly and precisely.
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1 Introduction

With the widespread use of mobile devices like mobile phones and GPS receivers,
Location Based Services offer convenient and commercially attractive ways to
solve issues like “Please direct me to the nearest shopping mall.”, “Which time
zone is my boss currently traveling in?”, or “Has the kid reached home safely?”
However, location information needs to be gathered and transfered securely,
protecting the privacy of the individuals involved.

This paper explores some of the basic protocols that can be used to transfer
location data, respecting the authorization, integrity and privacy requirements.
See the RFCs 3693 [CMM™"04] and 3694 [DMMPO04] for more background on
requirements and threat analysis.

The IETF working group Geopriv [GWGO06] has focused itself on

— the format of the Location Information to be sent (“Location Object”),

— the format of the Privacy Rules describing policies to be applied,

— particular cases of so-called “using” protocols, that is, protocols that carry
Location Information about a mobile user (the “Target”) from a Location
Server to a Location Recipient.

Nevertheless, to understand the requirements and goals of Geopriv, one needs
to consider also protocols that are out of scope at the IETF. The pieces missing
are protocols used to



— agree on pseudonyms and/or passwords for the Target and the Location
Recipient, which are to be used by the policies,

— request, using the credentials just mentioned, the Location Information from
a Location Server,

— transfer credentials to a Location Server,

— transfer the Privacy Rules to a Location Server,

— transfer the Location Information to an initial Location Server.

The main goals of this paper are to model a reference implementation of the
overall system and to evaluate its security in a systematic and holistic way. This
can be done only by including the just mentioned components.

The work described here has been done in an industrial context, at the in-
tersection of standardization bodies and commercial implementors. The main
principles of our design are:

— The most important requirements are to guarantee the correctness (integrity)
and confidentiality of the Location Information. This requires authenticating
the main entities of the protocol and securing the exchanged messages.

— A central role is played by user-controlled policies, which describe the per-
missions (or consent) given by the Target. The policies specify not only the
time and place when Location Information may be released to whom, but
also which component (or derived measure) of the information is to be re-
leased and in which granularity or accuracy.

— Whenever possible, the Location Information should not be linked to the

identity of the user. Rather, the user is able to specify which local identifier,
pseudonym, private identifier, or token is to be used instead.
Although complete anonymity may not be appropriate because of legal con-
straints or because some location services do in fact need the explicit identifi-
cation of the user, we argue that in most cases the location services may only
need some type of authorization information and/or perhaps an anonymous
identifier of the users, that may change as often as needed.

— To ease comprehendability and implementation, our reference model should
be as concise as possible. It shall clarify any issues left open by the RFCs.
Particular solutions and alternatives shall be motivated and explained.

Note that the main challenge and novelty aspect here is the anonymity goal
(identity protection), which inherently opposes the authentication requirements
and makes the use of existing protocols with standard certificates etc. impossible.

Given the recent advances in protocol analysis by the project AVISPA [AH-03]
and the availability of their tools, we have done the modeling in the High Level
Protocol Specification Language HLPSL [CCC*04] and have conducted our anal-
ysis with the tools contained in the AVISPA package [AT-05].

For reasons of space and to avoid confusion by two different syntactic levels,
we have decided to use for our presentation a pseudo-mathematical “Alice-Bob”-
style notation that seems to be widely accepted or at least easily understandable
without much further explanation. For more information on specifications in
HLPSL and on how to check them with the AVISPA Tool, please refer to the
HLPSL Tutorial [AVI05a] and the AVISPA User Manual [AVIOSb].



2 General design

As already mentioned, typical Geopriv protocols involve a Target (T), whose
Location Information (LI) is to be conveyed to a Location Recipient (LR) by a
Location Server (LS). A Privacy Rule (PR) defines the policy: who is allowed to
learn whose location, under which circumstances, with which Granularity (GR).
The Granularity may be, for instance, the complete street address, the GPS
coordinates up to a given precision, or just the time zone.

Although it is assumed that Location Servers adhere to the protocol and
cannot be compromised by an attacker, at least some types of Location Servers
are considered untrusted in the sense that they should not learn the real identities
of the Location Recipient and of the Target. So when communicating with the
Location Server, these parties do not use their real names but just pseudonyms
and/or passwords. Each party can authenticate itself to the Location Server with
the help of such a password or a signature related to the respective pseudonym.
The pseudonyms and passwords, if any, form part of the Privacy Rules. As
opposed to passwords, pseudonyms in general need not be kept secret.

It is assumed that Location Recipients do not abuse the Location Informa-
tion they obtain, e.g. by publishing it. Yet in our analysis, we will consider not
only standard sessions with honest Targets and Location Recipients, but also
problematic sessions where the intruder is allowed to assume the role of either of
these two. This means that his initial knowledge is augmented with the private
keys that a legitimate player of the role usually has, enabling him to play that
role properly. Such sessions themselves do not make much sense because the
intruder is made a legitimate source or receiver of the Location Information. It
is interesting, however, to see if such degenerate sessions can have a bad effect
on standard sessions.

Usually, the Target subsumes the role of Rule Maker. In our presentation we
further assume that the Target is also the Location Generator.! We also assume
that the Location Server is the Rule Holder.

The exchange between the Geopriv entities can be divided into the following
phases (or, sub-protocols).

Agreement. The Location Recipient and Target, who usually know and trust
each other, exchange credentials like pseudonyms and passwords. Typically,
this includes mutual authentication, as well as authorization of the Location
Recipient.

Policy. The Privacy Rule is transferred from the Target to the Location Server,
potentially via a separate Rule Holder. The main issue here is authorization
of the Target and authentication and integrity of the Privacy Rule.

Location. The Location Server learns the current location of the Target, po-
tentially via a separate Location Generator. The main issue here is secrecy,
authentication, and integrity of the Location Information.

1 A simpler — but in many cases not possible — alternative is that the Location Server
senses the presence of the Target directly (still without knowing T’s identity).



Information. The Location Recipient requests the location of the Target and
receives an answer from the Location Server. The main issues here are au-
thentication and authorization of the Location Recipient, as well as the se-
crecy, authentication, and integrity of the Location Information, this time
from the perspective of the Location Recipient.
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Fig. 1. Geopriv Structure

The general Geopriv structure is depicted in Fig. 1. The order of the first three
of the four sub-protocols may vary, whereas — without loss of generality — we
assume the order just given.

For each of the four phases, there are various ways to implement them. In
this paper we describe in detail two Geopriv protocol variants that exhibit four
differences distributed over all these phases. These differences are orthogonal to
each other, such that in effect we implicitly cover 2 = 16 variants.

3 Variant with two self-signatures

In our first variant, both the Location Recipient and the Target use a pseudonym
and a self-signature. A self-signature is a digital signature where the sender’s
public key (or a hash of it) is included in the part signed with the corresponding
private key. No certificate is used to link the sender’s identity with the public
key, but still the receiver can check that the sender holds the corresponding
private key and therefore should be the owner of the public key. Self-signatures
are used here to protect the anonymity of the Location Recipient and the Target
when communicating with the Location Server. To this end, each of the two
parties X € {LR, T} creates a public/private key pair (Py, Px')? and uses the
hash of the public key h(Px) as its pseudonym ¥x. We use the letter ‘P’ rather
than the usual ‘K’ for the these keys to emphasize that they are related to a

2 We use the handy notion X ! to refer to the private key related to the public key X,
which does not imply that the former can be derived from the latter, but alludes
to the fact that encryption using X can be inverted by decryption using X !, and
signatures (by decryption) using X ~* can be checked (by encryption) using X.



pseudonym. The purpose of hashing is just to compress the relatively large public
key values to a short and fixed-length field. A message including a self-signature
typically has the format {M.h(PX)}P}?l .Px, i.e. consists of some payload M and

Wx = h(Px) jointly signed® with the private key Py' and concatenated with
Px. In this way, the receiver (which is the Location Server here) can use the
public key provided to check the signature and see if the hash of the public key
matches the corresponding value in the signed part. If so, he can be sure that the
sender holds the private key related to both the public key and the pseudonym,
without learning the identity of the sender. Of course, authentication can only be
ensured in combination with other means. If self-signatures are used in isolation,
any party can produce them and then mount, e.g., denial-of-service attacks.

Furthermore, this variant uses public key cryptography for securing the mes-
sages of the agreement phase and signing the location information message sent
by the Location Server.

3.1 Protocol specification

The overall protocol, in the usual Alice-Bob notation, reads as follows.

Agreement. T « {LR}KT-{{T-Nl}KT'WLR}K;}c - LR
T 7{{N1}KLR.LT/T}K;1 — LR

This phase is secured using ordinary public-key encryption and signatures of
T and LR, with the public keys K1 and K i as well as their private counter-
parts K;l and KL_Jl%' In order to register with 7" and obtain T’s pseudonym,
LR sends to T its own identity LR, T’s identity (as a redundancy that can
be checked by T'), a nonce Ny (a “random” value used to ensure freshness
for the authentication of T'), as well as its own pseudonym ¥pr = h(PLg).
The name LR, used by T to identify LR, is encrypted with 7’s public key
such that LS has no chance to learn the association of ¥y with the real
identity LR. Note that we cannot move the name LR inside the signed part,
because T first needs to derive LR’s public key from this name before being
able to decrypt the signed part.

If T is willing to share its location (up to some granularity) with LR, it
answers with the nonce just received and the pseudonym W7 = h(Pr). Note
that the pseudonyms do not need to be encrypted, but just signed.

POliCy. T — {GR.E[’LR.SZ/T}PT—LPT — LS

T sends to LS its policy aka Privacy Rule, comprising the granularity GR
and the pseudonyms of LR and 7', in a self-signed way.

3 In practice, a message M is signed with a key Y ™! by appending M with the hash
of M decrypted with Y ™!, which we would denote by the term M.{h(M)}y -1, but
for our purposes (assuming M contains enough redundancy, and abstracting from
other issues like computational efficiency) it suffices to use the simpler term { M}y —1
that avoids repeating M.



Location. T —— {TS.{LI.&PT}KLS}PT_1.PT — LS

T informs LS about its current location, by sending, again in a self-signed
way, a timestamp TS (which can be used to avoid replay attacks) as well as
the Location Information LI (with maximal accuracy) and its pseudonym
Ur, both encrypted with the public key Krs.

Information. LS {LPLR.LPT.Ng}PEé.PLR - LR
LS — {{GR(LI)}p,;-Na} -1 —— LR

Finally, LR requests T’s current location by sending to LS, also in a self-
signed way, its own pseudonym, T’s pseudonym, and a nonce No. The nonce
ensures freshness for the authentication of LS and identifies the answer ex-
pected from LS. Therefore LS does not need to echo ¥y g or ¥r.

LS matches the pseudonyms with its Privacy Rule table, which is used also
for looking up the granularity GR specified by T'. If found, LS replies with
a message containing the location data and the nonce, where the location
data is LI projected to the granularity GR and encrypted with Py . Since
the encryption key Prr and the nonce Ny are not secret, such that anyone
could construct such a message, LS has to sign the message with its private
key KL_Sl in order to authenticate itself to LR.

Our model does not support location updates by re-sending the Location mes-
sage with new data. Therefore, replay protection for the authenticity of GR(LI)
is simple. If location updates are possible, one must do more to prevent replay at-
tacks, namely use a timestamp. Since HLPSL does not support time, we include
a pseudo-timestamp TS just as a reminder.

Furthermore, we do not explicitly model authorization (as opposed to authen-
tication) of the Location Recipient in the Agreement sub-protocol, or authoriza-
tion of the Target in the Policy sub-protocol. We simply take the worst-case
assumption that they are authorized unconditionally.

3.2 Requirements specification

The protocol has been designed to enjoy the following security properties, which
(apart from the last two ones) are immediate formalizations of the requirements
stated in RFC3693 [CMM™04].

— secrecy of LI and of the filtered version GR(LI)
LR strongly authenticates LS on Ny

LS weakly authenticates LR on Ppg

LS weakly authenticates T on GR

LR strongly authenticates T on GR(LI)

LR strongly authenticates T' on Ny

— T weakly authenticates LR on ¥

The phrase “X weakly authenticates Y on Z” means that X can be sure that
its peer is indeed Y and the two parties use the same value Z. This the same



as Lowe’s notion of non-injective agreement [Low97]. Strong authentication ad-
ditionally entails replay protection, i.e. freshness of the agreement (or session)
between the two, and directly corresponds to Lowe’s injective agreement. The
term “LR strongly authenticates T” appears twice — the first instance referring
to the authenticity of GR(LI) in the Information phase, the second one referring
to the authentication of T in the Agreement phase.

The formalization of both the protocol and its security requirements in the
specification language HLPSL can be found in the appendix as well as on-line
at http://www.avispa-project.org/library/self-signatures.html.

3.3 Design process and analysis results

In designing the protocol, we have been careful to fulfill the anonymity require-
ments, which unfortunately cannot be checked by the tools at hand. Moreover, we
aimed at minimizing the number of message fields and the use of cryptographic
operations, and we have tried to get as far as possible wrt. replay protection
without adding extra message exchanges. For evaluating the large number of
intermediate protocol versions wrt. structural correctness, confidentiality and
authentication, the AVISPA Tool [AT-05] has proved very useful — we have been
able to check these versions in an exploratory way, very quickly and easily.

For instance, in this way we have found that in the Location message, if we
encrypt LI only (resulting in the message {TS.{LI}KLS.WT}PTA.PT)7 we get
a man-in-the-middle attack against both authentication of LR and secrecy of
GR(LI), the trace*of which is the following:

1 — {LR}KT-{{T~N1}KT~WLR}K2}% - LR
T —{LR}kr {{T N1}y WLR} 2 -0

r — {{Nl}KLR WT}K L
T W{GRWLR WT}PTI PT‘—> 7
T - {TS~{LI}KLS~¢T}PT—1~PT — 1

~.

(T) — {GR.h(F;).h(Pi)} p-1.P; — LS
(T) -{TS{LI}kps-h(P)}p—1. Py — LS
i((LR) —— {h(P;).h(P).No}pr Py — LS
i(LR) «— {{GR(LI)}p, N2}K F— LS

~.

The essence of this attack is that after the Target has sent its messages, the
intruder can re-use the encrypted value {LI}k, . intercepted from T and pose

4 In our setting, a trace is a kind of message sequence chart describing which mes-
sages are sent between which parties in which order. Due to the standard Dolev-Yao
intruder model [DY83] which we employ, messages between honest parties are al-
ways sent via the intruder, denoted by i, who may decide to suppress, modify, or
forward them to any party. Where the intruder poses as role R, we write i(R). An
attack trace is a trace leading to an attack state, i.e. a state of the parties involved
(including the intruder) where one of the desired security properties is violated.
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towards LS as both a Target and a Location Recipient, hijacking the original
session. In this way, he can trick the Location Server to send to him, rather
than to the legitimate Location Receiver, a copy of GR(LI) encrypted with a
public key P;. Since P; can be chosen freely by the intruder, he can decrypt the
location data. To prevent this attack, we simply move ¥r inside the encryption,
arriving at the message {TS.{LI.Q/T}KLS}PTA.PT. Now any attempt to replay
{LI1.¥r} K, in a different context does not fit because ¥ does not match with
the hash of any public key for which the intruder has the corresponding private
key needed for producing the self-signature for the Location message.

Actually, due to anonymity, the Location Server cannot authenticate the Tar-
get and the Location Receiver individually but only check the consistency of the
self-signed messages received from the two. This also implies that the intruder
can always pose as both these parties simultaneously, provoking the following
degenerate exchange:

i(T) {GR.W(P}).1(P;)} p-1.P; — LS
i(T) —— {TSALLNP)}k,s}p1.P; — LS
i(LR) ——— {h(Pj).h(Pi).Nz}ijl.Pj — LS
(

i(LR) +—— {{GR(LI)}PJ..NQ}KZ; LS

Yet this is a useless attack (apart from wasting the Location Server’s re-
sources) because the intruder does not obtain anything interesting — he receives
just the location data that he has provided himself. As soon as a faithful Loca-
tion Recipient or Target is involved, correct authentication is guaranteed because
the Location Server can check the self-signed messages of these two parties for
consistency of the pseudonyms involved. This consistency, in turn, is guaranteed
by the mutual authentication of the Location Recipient and the Target. Hence
if one of these is authentic, then the other is, too.

4 Variant with password and certificate

Our second variant uses a pseudonym only for the Target and uses password for
the Location Recipient. The Target authenticates itself to the Location Server
not with a self-signature, but more stringently, with a certificate issued by a
trusted third party. The Agreement phase is secured using a shared secret key
(or any other form of a secure channel) rather than with public-key cryptography,
such that both the Target and the Location Recipient depend on a public-key
infrastructure (PKI) only for sending messages to the Location Server. In the
Information phase, the Location Recipient provides a (secret) temporary key
to be used for encrypting the location data. All this amounts to four major
differences to our first variant.

4.1 Protocol specification

The protocol is specified as follows.



Agreement. T LRA{T Ni}kr,n —— LR
T — [PWrWp.Ni}iy,n LR

This phase is secured with a secret key Ky shared between T and LR.
In order to register with 7" and obtain the password, LR sends to T its own
identity LR, T’s identity and a nonce N;. The name LR is sent in the clear
in this case, because T needs a way to tell who it is talking to and select the
right key Kppr. This is fine as long as LS cannot intercept and link the first
message with the anonymous request it receives in the Information phase.
If T is willing to share its location with LR, it answers with the nonce just
received, its pseudonym Wr, and the password PWrp. Actually, signing the
pseudonym would be sufficient, rather than encrypting it.

Policy. T - {GR.{PWT}KLS.WT}K;L{WT.KT}KCA — LS

T sends to LS its Privacy Rule, comprising the granularity GR, the password
(in encrypted form), and its pseudonym. All this is signed with T”s private
key. The receiver LS does not know T’s identity, yet in order to check the
signature, it is sufficient that T encloses a certificate — signed by a trusted
third party called C A — stating the relation between the pseudonym and 7T”s
public key. Of course, this means an extra overhead, which can be reduced
in cases where LS is allowed to know the identity of the Target.

Location. T {TS.{LI}KLS.!PT}K; — LS

T conveys to LS its current location, by sending, again signed with K. Lits
pseudonym ¥r and a timestamp T'S along with the Location Information
LI. Here only LI needs to be encrypted with the public key Krg because
LS can authenticate T independently of LR, using the certificate received
in the Policy phase. Therefore the two attacks explained in section 3.3 are a
priori not possible.

Information. LS «———— {Ky r.PWr.No}g,o —— LR
LS —  {GR(LI).N3}k,, —— LR

Finally, LR requests T’s current location by sending to LS a temporary key
K g, the password related to T (which actually renders sending along T"s
pseudonym unnecessary) and a nonce Np. All this is encrypted with LS’s
public key.
LS matches the password (and 7’s pseudonym, if sent nevertheless) with
its Privacy Rule table. If found, LS replies with a message containing the
location data and the nonce. Since the encryption key Kjr and the nonce
N3 have been kept secret, LR just needs to encrypt the location data and the
nonce with Krr in order to protect the location data and to authenticate
itself to LR.

The two notes wrt. location updates and authorization that we have given for
the other variant, apply also for this variant: location updates are not modeled,
which simplifies replay protection, and concerning authorization we have taken
the most pessimistic and simple assumption that any access is granted.



4.2 Security Properties

This protocol variant has security properties very similar to the previous one:

secrecy of LI and of the filtered version GR(LI)
secrecy of PWr and Ky

LR strongly authenticates LS on Ny

LS weakly authenticates T on GR

LR strongly authenticates T on GR(LI)

LR strongly authenticates T on Ny

T  weakly authenticates LR on LR

Note that there are additional secrecy goals, namely for PWr and Kpg.

We do not require that LS authenticates LR (e.g. on PWr) in the usual sense
because the LS can only check that the agent requesting the location information
knows the correct password PWrp. That is, we should require authentication
only modulo the group of agents allowed to know PWr. Yet if we consider the
(degenerate) session where the intruder legitimately plays the role of LR, he is
allowed to learn PWr in this session and obtain the location data from LS.
On the other hand, the model checkers would report an authentication failure
because the intruder can use PWr to pose as LR in a different (standard) session
where a honest agent has the role of LR and wants to talk to LS:

T e i {T.Ni}rp — (i)
T — (PWrlp.Nyy iy, —— (i)
T {GRAPWr}i, . Wr}yr.
{Or Kr}yr —i
i {GRAPWr}k, Wr} 1.
{WT'KT}KEZ — LS
T — {TS{LI}x, W} — i
) -{TS.{LI}KLS.LPT}Kfl — LS
i(LR) — {Ki.PWpWp.No}g,. — LS
i(LR) «—— {GR(LI).N3}x, LS

In this “attack”, the intruder forwards the messages from T' to LS (without
modification, as intended by T'), but then he poses as the Location Recipient of
a different® session with the same LS. Although this is harmless in the given
scenario (where the intruder can legitimately learn GR(LI) anyway), the issue
cannot be properly expressed in HLPSL and therefore confuses the analysis tools.

To avoid getting reported this spurious attack, we do not check that LS
authenticates LR on PWr but resort to checking the secrecy of the password
and the location data, which is handled by the tools in an adequate way.

No other (spurious or actual) attacks on this protocol have been found.

5 We do not reproduce the slightly obscure session indicators in the attack trace given
by the tools. The fact that two different sessions are involved in the above trace can
be inferred from the difference between the term (i) where the intruder represents
himself and ¢(LR) where he poses a LR.



The formalization of both the protocol and its security requirements in
HLPSL are available on-line at http://www.avispa-project.org/library/
password.html.

5 Conclusion

We have proposed protocols that form the core of Geopriv services, meeting the
challenge of anonymity despite authentication. This is the main novelty of our
protocol design. We have made explicit the design considerations that we took,
such that the protocols can easily be evaluated and re-used by others. We have
emphasized that many variations of the protocols are possible and have exem-
plified two of them. Others would be interesting, too, for instance combining the
strong certificate-based authentication of the Target given in our second vari-
ant with the self-signed pseudonym approach for the Location Recipient given
in our first variant (which is more strict than the password-based approach).
Implementors are free to choose among all those variations according to their
preferences and side-conditions imposed by the application context.

During the protocol design, it proved very helpful to formalize the various
versions of the protocol, as well as their intended properties, in a designated
protocol specification language and to check with automatic tools whether the
given requirements are fulfilled. Since this approach greatly reduces both time
and effort, we believe that it should — and soon will — become the standard
approach for crypto protocol design, be it academic or industrial.

Apart from the issues discussed, the model checkers do not find attacks. Since
we have carefully reviewed our formalizations to validate that they faithfully
describe the protocol design, and since the tools used are quite mature, we can
be confident that in the proposed Geopriv core protocols there are no design
flaws that can lead to attacks on confidentiality and authentication. Of course,
vulnerabilities at the cryptographic or implementation level cannot be excluded
with this approach, and the anonymity aspect has been checked only informally.

6 Outlook

As mentioned, for each of the four Geopriv sub-protocols, there are various
orthogonal ways to implement them. Therefore, it would be nice to reflect the
inherent modularity also during formal analysis, allowing to verify each of the
variants of the different phases separately and then perform some compositional
reasoning to arrive at the overall security properties, combining the common
properties of the variants for each of the phases involved.

Moreover, there are generalizations where several Geopriv instances are com-
bined on demand at runtime, to build a chain of Location Servers with the poli-
cies and the Location Information flowing along a chain of trust among them. For
instance, a Local Location Server may immediately sense the location, pass it on
via an intermediate Remote Location Server to a Home Location Server, which
is the only one the Target trusts. In this way, three Geopriv instances form a
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single higher-level instance. For analyzing such a scenario, a compositional rea-
soning technique is not only desirable, but actually indispensable because of
combinatorial explosion.

Further complications can arise from a different sort of privacy: when policies
depend on the Location Server and, for a given untrusted Location Server L, the
part of their contents that is not relevant to L should not be visible for L.

Orthogonally, there is the issue of dynamic policies in the sense of Privacy
Rules evolving over time, granting additional access and/or revoking access to
location data of various targets to various receivers. This may involve additional
pitfalls that would better be checked with the meticulousness of formal methods.

In a project related to AVISPA, we plan to do further research that will
tackle all the issues mentioned above.
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A Formalization of the first protocol variant in HLPSL

role target(

T, LS, LR : agent,
K_T, K_LS, K_LR : public_key,
H : hash_func,

Snd_LR, Snd_LS, Rcv: channel(dy)) played_by T def=

local
State : nat,
N1 : text,
P_T : public_key,

Psi_LR : hash(public_key),
LI, TS : text,
GR : hash_func

init State := 1

transition

[

. State =1 /\ Rcv({LR}_K_T.{{T.N1’} K _T.Psi LR’}_inv(K_LR))
=|> State’:= 3 /\ P_T’ := new()
/\ Snd_LR({{N1’}_K_LR.H(P_T’)}_inv(K_T))
/\ witness (T, LR, 1lr_T_N1i, N1’)
/\ wrequest(T, LR, t_LR_Psi_LR, Psi_LR’)
% could be new transition here, but not done for efficiency
/\ GR’ := new() Y% chooses some granularity (accuracy)
/\ Snd_LS({GR’.Psi_LR’.H(P_T’)}_inv(P_T’).P_T’)
/\ witness(T, LS, 1s_T_GR, GR’)
% could be new transition here, but not done for efficiency
/\ LI’ := new()
/\ secret(LI’, 1i, {T, LS, LR})
/\ secret((GR’(LI’)), filtered_LI, {T, LS, LR})
/\ TS’ := new()
/\ Snd_LS({TS’.{LI’.H(P_T’)}_K_LS}_ inv(P_T’).P_T’)

/\ witness (T, LR, 1lr_T_filtered_LI, (GR’(LI’)))
/\ witness(LS, LR, 1s_LR_P_LR, LS)

end role

role locationServer(
T, LS, LR: agent, % but LS does not actually use identity of T and LR
Psi_Table: (hash(public_key).hash(public_key).hash_func) set,
K_LS : public_key,
H : hash_func,
Snd, Rcv : channel(dy)) played_by LS def=

local State : nat,
P_T,P_LR : public_key,
N2 : text,
Psi_LR : hash(public_key),
LI, TS : text,
GR : hash_func
init State := 5
transition
5. State = \ Rcv({GR’.Psi_LR’.H(P_T’)}_inv(P_T’).P_T’)

5/
=|> State’:= 7 /\ Psi_Table’:= cons(Psi_LR’.H(P_T’).GR’, Psi_Table)

7. State = 7 /\ Rev({TS’.{LI’.H(P_T)}_K_LS}_inv(P_T).P_T)
=|> State’:= 9



9. State =9 /\ Rev({H(P_LR’).H(P_T).N2’}_inv(P_LR’).P_LR’)
/\  in(H(P_LR’).H(P_T).GR’, Psi_Table)
% uses Psi_LR and Psi_T to look up GR in the table
=|> State’:=11 /\ Snd({{(GR’(LI))}_P_LR’.N2’}_inv(K_LS))
/\ wrequest(LS, T , 1s_T_GR, GR’) ¥ delayed
/\ wrequest(LS, LR, 1s_LR_P_LR, P_LR’)
/\ witness (LS, LS, 1lr_LS_N2, N2’) % to any LR!

end role

role locationRecipient(

T, LS, LR : agent,

K_T, K_LS, K_LR : public_key,

H : hash_func,

Snd, Rev : channel(dy)) played_by LR def=
local

State : nat,

N1, N2 : text,

Psi_T : hash(public_key),

P_LR : public_key,

Filtered_LI : hash(text)

init State := 0

transition

0. State = 0 /\ Rcv(start)

=|> State’:= 2 /\ N1’ := new()
/\ P_LR’ := new()
/\ Snd({LR}_K_T.{{T.N1°}_K_T.H(P_LR’)}_inv(K_LR))
/\ witness(LR, T, t_LR_Psi_LR, H(P_LR’))

2. State = 2 /\ Rev({{N1}_K_LR.Psi_T’}_inv(K_T))
=|> State’:= 8 /\ N2’ := new()

/\ Snd({H(P_LR).Psi_T’.N2’}_inv(P_LR).P_LR)
/\ witness(LR, LS, 1s_LR_P_LR, P_LR)

/\ request(LR, T , 1lr_T_N1, N1)

/\ witness(LS, T , 1s_T_GR, LS)

8. State = 8 /\ Rcv({{Filtered_LI’}_P_LR.N2}_inv(K_LS))
=|> State’:= 10/\ request(LR, T, lr_T_filtered_LI, Filtered_LI’)
/\ request(LS, LS, 1lr_LS_N2, N2)

end role
role session(T, LS, LR : agent,
K_T, K_LS, K_LR : public_key,
H : hash_func,
Psi_Table : (hash(public_key) .hash(public_key) .hash_func) set) def=

local STLR, STLS, RT, SLR, RLR, SLS, RLS: channel(dy)

composition
target (T, LS, LR, K_T, K_LS, K_LR, H, STLR, STLS, RT)
/\ locationServer (T, LS, LR, Psi_Table, K_LS, H, SLS, RLS)
/\ locationRecipient(T, LS, LR, K_T, K_LS, K_LR, H, SLR, RLR)

end role



role environment() def=

local Psi_Table: (hash(public_key).hash(public_key).hash_func) set
% shared between all instances of LS

const 1li, filtered_LI,
1s_T_GR,
1r_T_N1,
t_LR_Psi_LR,
1s_LR_P_LR,
1lr_LS_N2,
1r_T_filtered_LI : protocol_id,
t, 1s, 1r : agent,
k_T, k_LS, k_LR, k_i : public_key,
h : hash_func

init Psi_Table := {}
intruder_knowledge = {t, 1s, 1lr, k_T, k_LS, k_LR, k_i, inv(k_i), h}
composition
session(t, 1ls, 1r, k_T, k_LS, k_LR, h, Psi_Table)

% /\ session(t, 1ls, lr, k_T, k_LS, k_LR, h, Psi_Table)

% repeat session to check for replay attacks

/\ session(i, 1ls, 1lr, k_i, k_LS, k_LR, h, Psi_Table)
% It does not make much sense to let the intruder play the role of T

% since then the intruder knows its location information anyway.

/\ session(t, 1s, i , k_T, k_LS, k_i , h, Psi_Table)

% It does not make much sense to let the intruder play the role of LR

% since then the intruder is allowed to know the (secret) location of T.
end role

goal

secrecy_of 1li, filtered_LI

strong authentication and integrity of the Location Information,
(including replay protection):
authentication_on 1lr_T_filtered LI

BN

% the Location Recipient Location authenticates the Location Server:
authentication_on 1lr_LS_N2

% the Location Server (weakly) authenticates the Location Recipient:
weak_authentication_on 1ls_LR_P_LR

% weak authentication and integrity of Granularity
weak_authentication_on 1ls_T_GR

% additional authentication goals, not in RFC3693:

authentication_on 1lr_T_N1
weak_authentication_on t_LR_Psi_LR

end goal

environment ()
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