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Abstract. This paper introduces the subset �Java of Java, essentially

by omitting everything but classes. The type system and semantics of

this language (and a corresponding abstract Machine �JVM) are for-

malized in the theorem prover Isabelle/HOL. Type safety both of �Java

and the �JVM are mechanically veri�ed.

To make the paper self-contained, it begins with introductions to

Isabelle/HOL and the art of embedding languages in theorem provers.

1 Introduction

Embedding a programming language in a theorem prover means to describe (parts of)

the language in the logic of the theorem prover, for example the abstract syntax, the

semantics, the type system, a Hoare logic, a compiler, etc. One could call this applied

machine-checked semantics.

Why should we want to do this? We have to distinguish two possible applications:

� Proving theorems about programs. This is usually called program analysis or

veri�cation and will not concern us very much in this paper.

� Proving theorems about the programming language. This is meta-theory and

could be called language analysis. It is the very focus of our work.

Since programming languages are complex entities, the machine, i.e. the theorem prover,

helps us to stay honest and also forces us to look for the simplest possible formalization

of all concepts.

The purpose of this paper is to describe a particular such embedding, namely the

de�nition of �Java, a fragment of Java, in the theorem prover Isabelle/HOL which is

based on higher-order logic. The main analysis that we discuss is the proof of type

safety, i.e. the absence of (unchecked) run-time type errors.

The plan of the paper is as follows. In the �rst third, we survey the necessary

background information: after a few general remarks about higher-order logic (x2) we

introduce the theorem prover Isabelle/HOL (x3) and discuss the main principles of

language embeddings (x4). The other two thirds are dedicated to �Java and the corre-

sponding virtual machine, the �JVM. For both levels, the type system and semantics

of the language are presented and type safety is proved. Discussion of related work is

found in the individual sections.



2 Higher-order logic

The term higher-order logic traditionally means a typed logic that permits quanti�ca-

tion over functions or sets. A very speci�c example of such a logic is Church's simple

theory of types [Chu40, And86]. In the theorem proving community, higher-order logic

is often abbreviated to HOL and refers to the simple theory of types. We follow this

convention which is due to one of the �rst theorem provers for this logic, Mike Gordon's

HOL system [Gor85, GM93], a descendant of LCF [Pau87].

The work reported in this paper has been conducted with the help of Isabelle/HOL:

Isabelle [Pau94] is a generic interactive theorem prover, and Isabelle/HOL an instance

supporting HOL. There are many other systems supporting HOL, and many other

higher-order logics. Mike Gordon's HOL system has spawned many closely related

implementations. There is even an automatic theorem prover for HOL, the TPS sys-

tem [ABI

+

96]|most other theorem provers for higher-order logics are interactive. Then

there is the area of type theories, which are constructive higher-order logics with so-

phisticated type systems. This area is marked by its proliferation of di�erent although

related logics, many of which are supported by their own theorem prover. The most

prominent of these provers are Coq [BBC

+

97], Nuprl [C

+

86] and Lego [Pol94]. Also

based on type theory are the Elf and Twelf systems [Pfe91, PS99]. Strictly speaking the

latter are not fully 
edged theorem provers but logical frameworks speci�cally designed

for prototyping but also (automatic) reasoning about deductive systems, in particular

operational descriptions of programming languages.

3 Modeling and proving in Isabelle/HOL

What is HOL? In a nutshell, it is a classical (i.e. two-valued) logic with equality and

total polymorphic higher-order functions. Therefore familiarity with classical predicate

logic and functional programming is all one needs when reading this paper, since we

will not be concerned with the low level details in proofs. The system Isabelle/HOL is

more than just a theorem prover for HOL, it is a fully 
edged speci�cation and pro-

gramming language. Coming from a programming perspective, one could characterize

Isabelle/HOL as combination of functional programming, logic programming and quan-

ti�ers. The remainder of this section describes the main features of Isabelle/HOL from

an abstract perspective. For more details see the Isabelle/HOL tutorial [Nip99a].

3.1 Terms, types, formulae and theories

The type system is similar to that of typed functional programming languages like ML,

Haskell and Gofer. There are basic types like bool, nat and int, and type constructors

(written post�x) like (�)list and (�)set (where � is the argument type). Function types

are written �

1

) �

2

and represent the type of all total functions. Type variables, which

are used to express polymorphism, are written �, � etc.

Terms are formed as in �-calculus by application and abstraction. The construc-

tions let x = e

1

in e

2

, if b then e

1

else e

2

and case e of p

1

! e

1

j . . . familiar from func-

tional programming are also supported.

Formulae are terms of type bool. HOL o�ers the usual logical vocabulary. The

notation

A

1

: : : A

n

C

means A

1

^ : : : ^ A

n

�! C.



Modules in Isabelle/HOL are called theories to emphasize their mathematical con-

tent. They contain collections of declarations and de�nitions of types and constants

(which include functions). You could also call them speci�cations or programs, depend-

ing on your point of view. Although you can in principle add new axioms as well, this

is strongly discouraged because of the following variant of Murphy's law:

What can be inconsistent will be inconsistent.

Therefore the HOL dogma (going back to Gordon's HOL system) is never to add new

axioms, only de�nitions, because the latter preserve consistency. However, working only

with basic non-recursive de�nitions of the form

name � term

can be very cumbersome. Therefore Isabelle/HOL additionally provides several derived

application-oriented de�nition principles: recursive datatypes, recursive functions and

inductively de�ned sets. We discuss them in turn.

3.2 Functional programming

Functional programming is supported by constructs for the de�nition of recursive

datatypes and recursive functions. A simple example is the theory of lists:

datatype � list = Nil ([])

j Cons � (� list) (in�xr #)

consts app :: � list ! � list ! � list (in�xr @)

primrec

[] @ ys = ys

(x # xs) @ ys = x # (xs @ ys)

It de�nes the recursive datatype of lists together with some syntactic sugar (Nil can

be written [] and Cons x xs can be written x#xs), declares a function app (with in�x

syntax @), and de�nes app by primitive recursion. The key proof technique in this

setting is structural induction on datatypes. For example, associativity of @

(xs @ ys) @ zs = xs @ (ys @ zs)

is proved by (structural) induction on xs:

Nil: ([] @ ys) @ zs = ys @ zs = [] @ (ys @ zs)

Cons: ((x # xs) @ ys) @ zs = (x # (xs @ ys)) @ zs =

x # ((xs @ ys) @ zs) = x # (xs @ (ys @ zs)) = (x#xs) @ (ys @ zs)

Such proofs are performed automatically by Isabelle/HOL.

More complex recursion patterns can be expressed by well-founded recursion, which

requires a termination ordering to convince Isabelle/HOL of the totality of the de�ned

function. More precisely, the ordering is used in a non-recursive de�nition of the func-

tion from which the desired recursion equations are proved as theorems. For details see

the work by Slind [Sli96, Sli97, Sli99].

Totality is always the key requirement when de�ning a function in HOL since HOL

is a logic of total functions, and the introduction of a truly partial function would cause

an inconsistency.



3.3 Inductively de�ned sets

Isabelle/HOL comes with a type (�)set of (�nite and in�nite) sets over type � and

together with the usual operations. Set comprehension is written fx : Pg instead of

fx j Pg.

Sets can be de�ned inductively in Isabelle/HOL, for example the set of even num-

bers:

consts even :: nat set

inductive

0 2 even

n 2 even

n+2 2 even

The importance of this mechanism cannot be overestimated because computer science

abounds with inductive processes.

In general, an inductive de�nition looks like this

consts M :: � set

inductive

t

1

2 M : : : t

n

2 M

t 2 M

and de�nes M as the least subset of � which satis�es the given rules. There can be

any �nite number of rules of the given format. In fact, a more general rule format is

supported, but this one su�ces for our purposes.

Leastness is the mathematical way of saying that the given rules are the only rules

that de�ne M. From a programmer's perspective, inductive de�nitions can be seen

as providing logic programming with closed world assumption. This gives rise to the

principle of rule induction. For example,

n 2 even �! n+n 2 even

is proved by induction on the derivation of n 2 even:

rule 1: 0+0 2 even

rule 2: n+n 2 even �! n+n+2 2 even �! n+n+2+2 2 even �! (n+2)+(n+2) 2 even

In general, x 2 M �! P(x) is proved by rule induction on x 2 M, i.e. by showing

that P is preserved by every rule:

P(t

1

) : : : P(t

n

)

P(t)

In fact, one may also assume t

i

2 M for all i = 1; : : : ; n. Isabelle/HOL supports proof

by rule induction.

3.4 Peeking at the library

The formalization of Java, as any large project, makes use of many prede�ned theories.

We quickly summarize the most important ones.

3.4.1 Cartesian products

The type �

1

� �

2

of Cartesian products of �

1

and �

2

comes with projection functions

fst :: � � � ! � and snd :: � � � ! �, and with (post�x) operations for constructing

the transitive closure R

+

and transitive re
exive closure R

�

of a relation R :: (� � �)set.



3.4.2 Lists

In addition to the basic list constructs shown above, the list library contains the fol-

lowing relevant functions:

length :: � list ! nat

set :: � list ! � set

map :: (� ! �) ! � list ! � list

zip :: � list ! � list ! (� � �)list

nodups :: � list ! bool

nth :: � list ! nat ! �

The meaning of length, set, map and zip should be obvious; nodups xs is true i� xs contains

no duplicates, and nth xs i selects the i-th element (starting from 0) and is abbreviated

by xs!i. The usual notation [x,y,z] instead of x#y#z#[] is also supported.

3.4.3 Options

The datatype of optional values

datatype � option = None j Some �

consts the :: � option ! �

primrec the (Some x) = x

the None = . . .

is used to add a new element None to a type and wrap the remaining elements up in

Some; function the unwraps them again; on None it can be de�ned arbitrarily.

3.4.4 Mappings

One frequently needs partial functions where one can determine if an entry is de�ned

or not. We call them mappings and de�ne them as functions with optional range type:

types � ; � = � ! � option

Typical applications are symbol tables (where declared names are mapped to some

information) or heap storage (where allocated addresses are mapped to their content).

For the convenient manipulation of mappings the following functions are provided:

empty :: � ; �

( 7! ) :: (� ; �) ! � ! � ! (� ; �)

( [ 7!] ) :: (� ; �) ! � list ! � list ! (� ; �)

� :: (� ; �) ! (� ; �) ! (� ; �)

map of :: (���) list ! (� ; �)

They represent the empty mapping, updating in one place and in a list of places,

overwriting of one map with another, and turning an association list into a mapping.

The de�nitions are unsurprising:

empty � �k. None

m(x 7! y) � �k. if k=x then Some y else m k

s � t � �k. case t k of None ! s k j Some y ! Some y

map of [] = empty

map of ((x,y)#l) = (map of l)(x 7! y)

m([] [7!] []) = m

m(a#as[ 7!]b#bs) = m(a 7!b)(as[ 7!]bs)



4 The basics of programming language embeddings

Historically, this work has its roots in research on generating programming environ-

ments, especially compilers and interpreters, from formal language descriptions. Promi-

nent systems of this kind are PSG [Sne85] (based on denotational semantics), ASF+SDF

[Kli93] (based on algebraic speci�cations) and Centaur [BCD

+

88]. Centaur is quite close

to our framework because it is based on operational semantics expressed by inference

rules, a connection that has already been exploited by Bertot and Fraer [BF95].

However, the �rst embedding of a semantics in a theorem prover is due to Gor-

don [Gor89], who de�ned the semantics of a simple while-language in the HOL system

and derived the rules of Hoare logic as theorems. The attractiveness of this approach

soon lead other researchers to embed various programming languages in various theo-

rem provers: CCS [Nes94], CSP [TW97], Java [Sym99, ON99, JHvB

+

98], JVM [Coh97,

Pus99], ML [Sym94, VG94, MG94], UNITY [APP94, Pra95, HC96, Pau99] and Hoare

logics [Nip98, Kle98, Ohe99]. This is just a random selection and not a complete list.

We will now discuss the basic principles of language embeddings.

The literature [BGG

+

92] distinguishes two di�erent kinds of embeddings:

deep embeddings represent the abstract syntax of the language as a separate datatype

and de�ne the semantics using the syntax (for example as a function from syntax

to semantics).

shallow embeddings de�ne the semantics directly, i.e. each construct in the language

is represented directly by some function on a semantic domain.

The di�erence is best explained by an example.

Assume we want to embed boolean expressions consisting of variables, conjunctions

and disjunctions in Isabelle/HOL. Let us call them positive boolean expressions. The

semantics of a boolean expression is a function from environments to boolean values,

where environments map variables (we assume we are given a type var of variables) to

boolean values:

types env = var ! bool

sem = env ! bool

A shallow embedding represents the semantics only, i.e. it identi�es the positive boolean

expressions with type sem. Each language construct is directly de�ned in terms of

semantics:

var p � �e. e p, and b

1

b

2

� �e. b

1

e ^ b

2

e, or b

1

b

2

� �e. b

1

e _ b

2

e

Thus the boolean expression \p^q" (where p and q are variables) is represented directly

by the HOL function �e. e(p) ^ e(q) of type sem.

A deep embedding requires a de�nition of the syntax, usually as an inductive type:

datatype pbex = Var var j And pbex pbex j Or pbex pbex

The semantics is de�ned by an explicit function eval :: pbex ! sem:

eval (Var p) = �e. e(p)

eval (And b

1

b

2

) = �e. (eval b

1

e ^ eval b

2

e)

eval (Or b

1

b

2

) = �e. (eval b

1

e _ eval b

2

e)



The boolean expression \p^ q" is represented by And (Var p) (Var p) and applying eval

to it yields its semantics �e. e(p) ^ e(q).

Both embeddings allow proofs about individual boolean expressions, for example

\p ^ p = p". In a shallow embedding this reduces (via extensionality of functions) to

the idempotence of ^ in HOL:

((�e. e(p) ^ e(p)) = (�e. e(p))) = (e(p) ^ e(p) = e(p)) = True

The deep embedding has to be reduced to the shallow one �rst before the truth emerges:

(eval(And (Var p) (Var p)) = eval(Var p)) = ((�e. e(p) ^ e(p)) = (�e. e(p))) = True

This indicates that deep embeddings are often harder to work with than shallow ones

because the syntax has to be translated into semantics �rst.

However, the tide turns against shallow embeddings when we consider general state-

ments about the embedded language as a whole, i.e. meta-theory. For example, we

would like to prove monotonicity of positive boolean expressions. To this end we order

bool and env in the canonical way, i.e. False < True and env is ordered pointwise:

x � y � x �! y

e

1

�

e

e

2

� 8p. e

1

(p) � e

2

(p)

In the deep embedding, monotonicity of pb :: pbex is expressed as

e

1

�

e

e

2

�! eval pb e

1

� eval pb e

2

and proved by induction on pb. The Var-case is straightforward by assumption:

eval (Var p) e

1

= e

1

(p) � e

2

(p) = eval (Var p) e

2

.

The And-case (and similarly the Or-case) follows from the monotonicity of ^ in HOL

using the induction hypotheses:

eval (And x y) e

1

= eval x e

1

^ eval y e

1

� eval x e

2

^ eval y e

2

= eval (And x y) e

2

In the shallow embedding however, monotonicity of f :: sem, i.e.

e

1

�

e

e

2

�! f e

1

� f e

2

is not true because sem contains the semantics of all boolean expressions, not just the

positive ones. The restriction to variables, conjunctions and disjunctions is not part

of the speci�cation and thus not available for an inductive proof. Hence it is folklore

that shallow embeddings do not allow meta-theory. However, this is not true as Felty

et al. [FHR99] have shown: one can often de�ne the required subset of the semantics

via an inductive de�nition that follows the syntax. In our case we de�ne a subset Pbex

of denotations of positive boolean expressions:

consts Pbex :: sem set

inductive

var p 2 Pbex

b

1

2 Pbex b

2

2 Pbex

and b

1

b

2

2 Pbex

b

1

2 Pbex b

2

2 Pbex

or b

1

b

2

2 Pbex

Monotonicity of Pbex is expressed as b 2 Pbex �! e

1

�

e

e

2

�! b e

1

� b e

2

and proved

by rule induction on b 2 Pbex. The proof follows the one above for pbex very closely.

It should be clear from our discussion that a shallow embedding is advantageous

for reasoning about individual elements of the embedded language. For meta-theory

a deep embedding is the natural choice, but combining a shallow embedding with an

inductive de�nition may also work. Our Java formalization presented below is a deep

embedding because of our interest in meta-theory and also because the semantics is

de�ned operationally rather than denotationally. Thus there is no direct semantic

counterpart for each syntactic construct.



5 �Java

This section describes the �Java formalization and one of its applications, a proof of

type-safety. After motivating the subset of Java that we chose and giving a short survey

of related work, we present the abstract syntax and operational semantics of �Java along

with the corresponding well-formedness and well-typedness conditions. Subsequently

we introduce the notions required for the type-safety proof and state the main results.

5.1 Why �Java?

Being a general-purpose programming language, Java has (almost) all features a state-

of-the-art language is supposed to o�er. Formalizing all of them is possible, but the

amount of detail and the complexity of several aspects like concurrency would make it

involved and di�cult to handle. Thus a typical formalization like Bali [ON99] on the

one hand tries to cover the main features of Java, but on the other hand intentionally

leaves out many bulky but uninteresting details. For didactic purposes, the result is

still too involved. So we further reduced Bali to the bare essentials of Java, namely an

imperative language with classes: �Java.

5.2 Other approaches to formalizing Java

There are several formalizations of Java, the pioneering one being of Drossopoulou and

Eisenbach [DE97]. It gives a transition (\small-step") semantics of the core object-

oriented features of Java and a proof of type-safety, which has been extended later

[DE99] to include exception handling. Syme has embedded this paper-and-pencil work

in his theorem prover DECLARE [Sym99], correcting several 
aws that came up thanks

to the rigorous machine-checked treatment. In parallel, we have developed the �rst

version of our embedding in Isabelle/HOL [NO98] covering a similar fraction of Java

but using an evaluation (\big-step") semantics. B�orger and Schulte have formalized (on

paper) almost the full Java language as an Abstract State Machine [BS99]. Jacobs el al.

translate Java code directly into the PVS higher-order logic (as a shallow embedding)

in order to conduct program veri�cation [JHvB

+

98].

5.3 Design goals

For any formalization, it is important to aim at the following general design goals.

� readability (this is the basic requirement, as otherwise handling and applying the

formalization would be severely hampered),

� faithfulness to the original language speci�cation,

� succinctness and simplicity,

� maintainability and extendibility,

� adequacy for applications like theorem proving.

The reader is invited to keep them in mind while reading the subsequent sections and

to judge herself how far we have reached them.



5.4 Abstract syntax of �Java

5.4.1 Programs

A key idea of this formalization is to separate declarations from code. Not only is

their structure inherently di�erent, they can also be described in isolation from each

other. Since furthermore the structures of declarations for �Java and its �JVM are

identical (from an abstract point of view), it is pro�table to formalize the declarations

in a generic style and supplying the actual method bodies (i.e., code) as a parameter.

As a �Java program consists of a series of class declarations, we model with a

(parameterized) type that stands for a list of class declarations:

types � prog = � cdecl list

The parameter � is the type of method bodies. The list representation is not the most

abstract one possible, since it retains the immaterial order of the class declarations. Yet

its advantages are that it implies a �niteness constraint on the number of declarations

and that the canonical conversion to a mapping yields a simple lookup mechanism.

A class declaration consists of the class name (of type cname which does not need

to be speci�ed further), the name of the superclass (for all classes except Object), and

the lists of �eld and method declarations:

types � cdecl = cname � cname option � fdecl list � � mdecl list

Field declarations simply give the �eld name and type,

types fdecl = vname � ty

whereas method declarations give the method signature (consisting of the method name

and the list of parameter types), the result type, and the method body, which is the

parameter motivated above.

types sig = mname � ty list

� mdecl = sig � ty � �

5.4.2 Values and types

The variety of values and their corresponding types in �Java is limited to the most

important ones, basically Booleans, integers, and class references:

datatype val = Unit

j Bool bool

j Intg int

j Null

j Addr loc

datatype ty = void

j boolean

j int

j NT

j Class cname

Here NT stands for the null type, i.e. the common type of all Null references. We have

invented the type void (with the single dummy value Unit) for convenience in modeling

the (non-existing) result of void methods.

Function default val, de�ned by cases on ty, is used for variable initialization. Func-

tion typeof (of HOL type (loc ! ty option) ! val ! ty option), determining the dynamic

type of a value, is used for the de�nition of conformance in x5.8.2, where the argument

dt is used to dermine the existence and the (class) types of objects on the heap.



primrec default val void = Unit

default val boolean = Bool False

default val int = Intg 0

default val NT = Null

default val (Class C) = Null

primrec typeof dt Unit = Some void

typeof dt (Bool b) = Some boolean

typeof dt (Intg i) = Some int

typeof dt Null = Some NT

typeof dt (Addr a) = dt a

5.4.3 Looking up method and �eld declarations

The method lookup function

method :: � prog � cname ! (sig ; cname � ty � �)

serves as a typical example of a de�nition by well-founded recursion. The intended

result of method (�,C) sg is Some (D,T,b) where class D is the �rst class (traversing the

subclass hierarchy upwards starting from C) that declares a method with signature

sg, which has return type T and body b. Exploiting the fact that the inverse subclass

relation (see x5.5.1) is well-founded, the following characteristic equation can be derived

from the de�nition of method:

wf ((subcls1 �)

�1

) �!

method (�,C) = case map of � C of None ! empty

j Some (sc,fs,ms) !

(case sc of None ! empty j Some D ! method (�,D)) �

map of (map (�(s,m). (s,C,m)) ms)

A similar de�nition is used for

�elds :: � prog � cname ! ((vname � cname) � ty) list

The formalization given up to here is identical for �Java and our �JVM. Now comes

the part of the abstract syntax that is �Java-speci�c.

5.4.4 �Java statements and expressions

The �Java statements are just the canonical ones for imperative languages, except that

any expression may be used as statement and assignments are considered as expressions

since they yield a result. Next to literals, local variables and type casts, the �Java ex-

pressions contain the actual object-oriented features, namely class creation, �eld access

and assignment, and method call. We model the this expression by a special non-

assignable local variable of that name. The Isabelle/HOL datatype de�nition of the

abstract syntax intentionally looks pretty much like a BNF speci�cation:

datatype stmt = Skip

j expr

j stmt; stmt

j if (expr) stmt else stmt

j while (expr) stmt

and expr = new cname

j (ty)expr

j val

j vname

j vname := expr

j fcnamegexpr.vname

j fcnamegexpr.vname := expr

j expr.mname(fty listgexpr list)



5.4.5 Program annotations

The parts in braces f. . .g in the above de�nition of expressions are called type anno-

tations. Strictly speaking, they are not part of the source language but are normally

computed by the compiler during type checking. Their purpose is to serve as auxil-

iary information that is crucial for the resolution of method overloading and the static

binding of �elds, with the following meaning:

Static overloading of methods: in the method call obj.m(fformal-param-tysgparams),

formal-param-tys stands for the formal parameter types of the maximally speci�c

method applicable w.r.t. the static types of obj and params. During execution,

(m,formal-param-tys) is used for method lookup.

Static binding of �elds: in fCgobj.f, C is the class declaring the �eld f w.r.t. the

static type of obj. During execution, (C,f ) is used for �eld selection.

In our language embedding, we do not distinguish between the source language

and the augmented internal form since this would lead to a considerable amount of

redundancy. Instead, we assume that the annotations are added beforehand (by some

preprocessing step) and checked by the typing rules given in x5.5.3 below.

5.4.6 Method bodies

Finally, the de�nitions of statements and expressions being available, we can formalize

�Java method body declarations. We de�ne them as a tuple of parameter names, local

variable declarations, a statement comprising the actual code block, and an expression

to be returned|there is no return statement in �Java.

types java mb = vname list � (vname � ty) list � stmt � expr

5.5 Type system of �Java

The type system consists of the types already introduced, some basic relations between

types (in particular, classes) and the actual typing rules for expressions and statements.

5.5.1 Type relations

Being an object-oriented language, �Java of course features the subclass relation, which

is extracted w.r.t. a given program �:

� subcls1 � � f(C,D) . 9r. (C,Some D,r) 2 set �g

� �`C�

c

D � (C,D) 2 (subcls1 �)

�

Built on the subclass relation we de�ne the important widening relation, where

�`S�T means that in the context � value of type S may be used in a place where a

value of type T is expected. We give this relation via an inductive de�nition:

inductive

�`T � T �`NT � Class C

�`C�

c

D

�`Class C � Class D



5.5.2 Typing judgments

There are three forms of typing judgments, namely for well-typed statements, expres-

sions, and expression lists:

java mb env ` stmt

p

java mb env ` expr :: ty

java mb env ` expr list [::] ty list

The judgments include a context called environment that consists of the program and

type bindings for local variables currently in scope:

types � env = � prog � (vname ; ty)

The actual type parameter for �Java environments is java mb.

5.5.3 Typing rules

The typing rules for most �Java terms are straightforward, thus we give only one typical

example, namely the well-typedness of while loops:

E`e :: boolean E`s

p

E`while (e) s

p

More interesting are the rules for �eld access and method call.

The �eld access rule enables static binding by calculating the annotation C with the

help of the auxiliary function �eld � map of � (map (�((fn,fd),ft). (fn,(fd,ft)))) � �elds as

follows:

E`a :: Class D

�eld (fst E,D) fn = Some (C,fT)

E`fCga.fn :: fT

In a similar fashion, method overloading is resolved in the method call rule. This

involves the requirement that the max spec auxiliary function (given below) yields a

most speci�c applicable method.

E`e :: Class C E`ps [::] pTs

max spec (fst E) C (mn,pTs) = f(( ,rT),fpTs)g

E`e.mn(ffpTsgps) :: rT

5.5.4 Maximally speci�c methods

Following the involved de�nition in the Java speci�cation, max spec � C sig determines

the set of all maximally speci�c applicable methods of signature sig available for class

C in program �: max spec � C sig �

fm. m 2 appl methds � C sig ^ (8m

0

2appl methds � C sig. more spec � m

0

m �! m

0

=m)g

The partial order on methods used for max spec is given by the relation more spec �,

which states that the de�ning classes as well as all parameter types are (pointwise) in

widening relation:

more spec � ((d, ),pTs) ((d

0

, ),pTs

0

) � �`d�d

0

^ list all2 (�T T

0

. �`T�T

0

) pTs pTs

0

list all2 P xs ys � length xs = length ys ^ (8(x,y)2zip xs ys. P x y)

The set of methods (available for class C in program �) applicable for signature (mn,pTs)

are those with name mn and �tting parameter types:

appl methds � C (mn,pTs) � f((Class D,rT),pTs

0

).

method (�,C) (mn,pTs

0

) = Some (D,rT, ) ^

list all2 (�T T

0

. �`T�T

0

) pTs pTs

0

g



5.6 Well-formedness of both �Java and �JVM programs

Now we are equipped to express the well-formedness conditions on programs, which are

part of the static checks performed by the compiler.

5.6.1 Programs

A program is well-formed i� it contains class Object (for simplicity, we model this class

as if it were user-de�ned) and all class declarations are well-formed and no class is

declared twice:

wf prog wf mb � � ObjectDecl 2 set � ^

(8c2set �. wf cdecl wf mb � c) ^ nodups (map fst �)

ObjectDecl � (Object, (None, [], []))

Note that this de�nition is parameterized with wf mb, which is aimed to be the well-

formedness predicate for method bodies (given in x5.6.3 below).

A class declaration (C,sc,fs,ms) is well-formed (in �) i�

� all types in the �eld declarations fs are legal,

� no �eld is declared twice,

� all method declarations in ms are well-formed,

� no method is declared twice,

� only class Object has no superclass,

� if C extends D then

{ D must be declared in �,

{ D must not be a subclass of C, and

{ if a method in ms overwrites one higher up, its return type must widen to

the return type higher up.

Formally:

wf cdecl wf mb � (C,sc,fs,ms) �

(8( ,T)2set fs. is type � T) ^

nodups (map fst fs) ^

(8m2set ms. wf mdecl wf mb � C m) ^

nodups (map fst ms) ^

case sc of None ! C = Object

j Some D ! D 2 set (map fst �) ^

: �`D�

c

C ^

8(sg,T, )2set ms. 8T

0

. method(�,D) sg = Some( ,T

0

, ) �! �`T � T

0

5.6.2 Methods (both �Java and �JVM)

The de�nition of well-formed classes relies on the well-formedness conditions for method

declarations, which in turn rely on the well-formedness of method heads, the well-

formedness parameter for method bodies, and the simple is type predicate testing the

existence of a class:

wf mdecl wf mb � C (sig,rT,b) � wf mhead � sig rT ^ wf mb � C (sig,rT,b)

wf mhead � (mn,pTs) rT � (8T2set pTs. is type � T) ^ is type � rT

is type � T � case T of Class C ! C 2 set (map fst �) j ! True



5.6.3 Method bodies (�Java)

A method with signature (mn,pTs), return type rT, and body (pns,lvars,blk,res) is well-

formed within class C in � i�

� there are as many parameter names pns as parameter types pTs,

� the names of parameters and local variables are unique and do not clash,

� all types of the local variables lvars are legal,

� in the context of �, the local variables and the current class C, the code block blk

is well-typed and the type of the result expression res widens to rT.

Formally:

wf java mdecl � C ((mn,pTs),rT,(pns,lvars,blk,res)) �

length pns = length pTs ^

nodups pns ^ nodups (map fst lvars) ^

(8pn2set pns. map of lvars pn = None) ^

(8(vn,T)2set lvars. is type � T) ^

let E = (�,map of lvars(pns[ 7!]pTs)(this7!Class C))

in E`blk

p

^ (9T. E`res::T ^ �`T�rT)

Note that in contrast to Java, it is not required that local variables are initialized

explicitly: the operational semantics does so implicitly upon method invocation.

Predicate wf java mdecl serves as actual parameter of wf prog for �Java programs:

wf java prog � � wf prog wf java mdecl �

5.7 Operational semantics of �Java

For the semantics of �Java we use an operational description, as this style is the same as

the original speci�cation of Java [GJS96], easy to understand, and almost immediately

executable.

5.7.1 Program state

A �Java state consists of the local variables and the heap, where the heap is a map-

ping from locations to objects, where objects consist of a class name and the instance

variables.

types obj = cname � (vname ; val)

heap = loc ; obj

locals = vname ; val

state = heap � locals

An extended state is augmented with an optional exception. Here we need only a few

of the language-de�ned exceptions of Java.

types xstate = xcpt option � state

datatype xcpt = NullPointer

j ClassCast

j OutOfMemory

Usually the meta-variables � and s are of type state and xstate respectively.



5.7.2 Evaluation judgments

We deliberately chose an evaluation semantics as opposed to a transition semantics,

since it is more abstract, less verbose and more convenient for proofs.

Analogously to typing judgments, there are three forms of evaluation judgments:

statements transform an initial state to a �nal one, expressions additionally yield a

value, and expression lists yield a list of values.

java mb prog ` xstate �stmt! xstate

java mb prog ` xstate �expr�val! xstate

java mb prog ` xstate �expr list[�]val list! xstate

5.7.3 Evaluation rules and exception propagation

For each form of judgment, there is a general rule stating that exceptions propagate,

e.g.

�`(Some xc,�) �c! (Some xc,�)

All other rules assume that the initial state is exception-free, but any further (interme-

diate) states may be exceptional, like s

1

and s

2

in the (otherwise trivial) composition

rule:

�`(None,�) �c

1

! s

1

�`s

1

�c

2

! s

2

�`(None,�) �c

1

; c

2

! s

2

5.7.4 Method call rule

Most of the evaluation rules are more or less straightforward and are omitted here. The

most complex rule is that for method calls:

�`(None,�) �e�a! s

1

�`s

1

�ps[�]pvs! (x,h,l)

dynT = fst (the (h (the Addr a)))

( , ,pns,lvars,blk,res) = the (method (�,dynT) (mn,pTs))

�`(np a x, h, (init vars lvars)(pns[ 7!]pvs)(this7!a)) �blk! s

3

�`s

3

�res�v! (x

4

,h

4

, )

�`(None,�) �e.mn(fpTsgps)�v! (x

4

,h

4

,l)

where

the Addr(Addr l) = l

np v x � if v = Null ^ x = None then Some NullPointer else x

init vars � map of � map (�(n,T). (n,default val T))

Note that local variables are initialized with their default values, in contrast to Java,

where the programmer must initialize them explicitly.

5.8 Type-safety

5.8.1 The notion of type-safety

A programming language is type-safe i� its type system prevents type mismatches, i.e.

situations where dynamically produced values do not conform to the corresponding

statically determined types. A language may be not type-safe if it has no type system

at all (e.g., Smalltalk) or the type system is unsound (e.g., Ei�el). A consequence of

type-safety for object-oriented languages is that method calls always �nd an applicable

method. Note that type-safety (usually) does not cover division by zero, nontermina-

tion, etc.



5.8.2 Conformance of values to types

Central to the proof of type-safety is an invariant stating that all (run-time) values

conform to their declared types, i.e. the types of the values are subtypes of the declared

types. This notion is lifted pointwise from single values to maps of values and further to

the whole state conforming to a type environment. The conformance judgments have

the form

� prog,heap` val ::� ty

� prog,heap`(� ; val)[::�](� ; ty)

state ::� java mb env

and the de�nitions

obj ty o � case o of None ! None j Some (C,fm) ! Some C

�,h`v ::�T � 9S. typeof (obj ty � h) v = Some S ^ �`S�T

�,h`vm[::�]Tm � 8n T. Tm n = Some T �! (9v. vm n = Some v ^ �,h`v ::�T)

(h,l)::�(�,lT) � (8a C fm. h a = Some(C,fm) �! �,h`fm [::�] map of(�elds(�,C))) ^

�,h` l [::�] lT

5.8.3 Proof of type-safety

A simple but important lemma for type-safety (not considering garbage collection) is

the invariant that during execution any object once created is never lost and retains its

type. This is formalized as the heap extension relation

h�h

0

� 8a C fm. h a = Some(C,fm) �! (9fm

0

. h

0

a = Some(C,fm

0

))

The invariant is proved by simultaneous rule induction, such that the proof goal is

(�`(x,h,l) � c ! (x

0

,h

0

,l

0

) �! h�h

0

^

(�`(x,h,l) � e � v ! (x

0

,h

0

,l

0

) �! h�h

0

^

(�`(x,h,l) �es[�]vs! (x

0

,h

0

,l

0

) �! h�h

0

The main theorem states that for well-formed programs, execution of well-typed

statements and expression preserves conformance:

wf java prog � �!

(�`(x,�) �c! (x

0

,�

0

) �!

8lT. �::�(�,lT) �! (�,lT)`c

p

�!

�

0

::�(�,lT)) ^

(�`(x,�) �e�v! (x

0

,�

0

) �!

8lT. �::�(�,lT) �! 8T. (�,lT)`e::T �!

�

0

::�(�,lT) ^ (x

0

= None �! �,fst �

0

`v ::�T)) ^

(�`(x,�) �es[�]vs! (x

0

,�

0

) �!

8lT. �::�(�,lT) �! 8Ts. (�,lT)`es[::]Ts �!

�

0

::�(�,lT) ^ (x

0

= None �! list all2 (�v T. G,fst �

0

`v ::�T) vs Ts))

This theorem is proved again by simultaneous rule induction and requires a large

amount of auxiliary lemmas. The part concerning statements may be re-phrased in a

more readable form as

wf java prog � ^ E = (�,lT) ^ E ` c

p

^ � ` ( ,�) �c! ( ,�

0

) ^ � ::� E �!

�

0

::� E

An almost direct consequence is that \method not understood" run-time errors

cannot occur.



6 �JVM

6.1 The �Java Virtual Machine

The source language Java comes with an abstract machine known as the Java Virtual

Machine (JVM ) [LY96]. Its instruction set is a high-level assembly language speci�cally

tailored for Java. It is meant to be the standard target language for Java compilers. In

this subsection we present the �JVM, an abstract version of the JVM geared towards

�Java. The main simpli�cation in our approach is the use of �Java program skeletons

for holding �JVM instruction sequences. This is the reason why type prog in x5.4.1

above is de�ned in a generic way and is parameterized by the actual method code. As

a result, we can avoid the specialized �le formats (\class �les") described in the JVM

speci�cation [LY96]. Their main purpose is to record the type information present in

the source programs.

6.1.1 Related work

There are a number of operational de�nitions of variants of the JVM. Our model is

based on the work of Pusch [Pus99] which in turn is based on the work of Qian [Qia99].

Hartel et al. [HBL99] independently arrive at a similar formalization. A description

based on Abstract State Machines is given by B�orger and Schulte [BS98].

6.1.2 �JVM instructions

The �JVM is a stack machine. For each method invocation there is an operand stack

for expression evaluation and a list of local variables (which includes the parameters).

The formal model is described in x6.1.3.

Following the JVM speci�cation [LY96], we have structured the instructions into

several groups of related instructions, describing each by its own execution function.

This makes the operational semantics easier to understand, since every function only

works on the parameters that are needed for the corresponding group of instructions:

datatype instr = LS load and store

j CO create object

j MO manipulate object

j CH check object

j MI meth inv

j MR meth ret

j OS op stack

j BR branch

We will now discuss these groups brie
y. Instruction names mostly follow the JVM

nomenclature.

� datatype load and store = Load nat j Store nat j Bipush int j Aconst null

Load n pushes the contents of local variable n on the stack. Store n pops the top

from the stack and puts it into local variable n. Bipush i pushes integer i on the

stack. Aconst null pushes the null reference on the stack.

� datatype create object = New cname

New C creates a new object of class C and initializes its �elds according with their

default values.



� datatype manipulate object = Get�eld vname cname j Put�eld vname cname

Get�eld x C uses the top of the stack as the address of an object of class C and

replaces that address with the value of �eld x of the object; Put�eld x C expects

both a value and an address on the stack, puts the value into �eld x of the object

and pops both value and address from the stack.

� datatype check object = Checkcast cname

Checkcast C checks if the top of the stack is a reference to an object of class C (or

a subclass of C) and throws an exception if not.

� datatype meth inv = Invoke mname (ty list)

Invoke mn ts interprets the top of the stack as a reference to an object and calls

the method determined by the class of that object and the signature (mn,ts).

� datatype meth ret = Return

Return returns from a method invocation. The result value is the top of the stack.

� datatype op stack = Pop j Dup j Swap

The instructions pop, duplicate and swap the top of the stack.

� datatype branch = Goto int j Ifcmpeq int

Goto is unconditional, whereas Ifcmpeq compares and pops the two top elements

of the stack and only performs the jump if they are equal. The integer argument

is added to the current program counter.

This is just a representative sample of instructions which is su�cient to serve as a target

language for �Java. Because some features are missing (e.g. arrays and interfaces) and

because we have restricted the instruction set to the essentials, some groups have become

singletons. Type conversion instructions have disappeared altogether because we have

only one numeric type, int. Arithmetic is missing (as in �Java) but would be trivial to

include. There are also some subtle di�erences to the corresponding JVM instructions:

� A number of instructions such as Load, Store and Return are overloaded, i.e. they

work for all types. This streamlines the instruction set without, as we shall see,

compromising type-safety.

� Invoke does not carry the name of the class de�ning the invoked method. This

complicates the proof of type-safety, as discussed in x6.3.

6.1.3 Operational semantics of �JVM instructions

As discussed above, a �JVM program is simply a �Java program where the method

bodies consist of instruction sequences. Thus we instantiate our program skeleton type

prog once more:

types bytecode = instr list

jvm prog = (nat � bytecode) prog

The natural number in the method body simply says how many local variable this

method has (which could be computed by scanning the bytecode). It is used when

allocating stack space upon method invocation. The JVM also records the maximum

stack size, which we have chosen to leave open.



The �JVM state is formalized as a triple consisting of an optional exception, the

heap, and the frame stack. This is just like in �Java's xstate, except that the local

variables are replaced by the frame stack. For each active method invocation, there

exists a frame containing its own operand stack, a list of local variables, the name of

the current class, the signature of the current method, and the program counter:

types jvm state = xcpt option � heap � frame list

frame = opstack � locvars � cname � sig � nat

opstack = val list

locvars = val list

Note that xcpt, val and heap are inherited from �Java. The local variables are laid out

in the format [this,p1,..,pm,l1,..,ln], where this is the value of this, p1 through pm are

the parameters of the method, and l1 through ln are the remaining local variables.

Execution of a �JVM instruction transforms the machine state. A raised exception

or an empty frame stack means the �JVM is in a �nal state|remember that there

is no exception handling. If the machine has not yet reached a �nal state, function

exec performs a single execution step: it calls an appropriate execution function (e.g.

exec mo) and incorporates the result in the new machine state. To model the distinction

between �nal and non-�nal states, the result type of exec is jvm state option: None is

returned if there is no successor state.

exec :: jvm prog � jvm state ! jvm state option

exec(�, (None, hp, (stk,loc,C,sig,pc)#frs)) =

Some (case snd(snd(snd(the(method (�,C) sig)))) ! pc of

MO ins !

let (xp

0

,hp

0

,stk

0

,pc

0

) = exec mo ins hp stk pc

in (xp

0

,hp

0

,(stk

0

,loc,C,sig,pc

0

)#frs)

j : : : ! : : :)

exec(�, (xp, hp, [])) = None

exec(�, (Some xp, hp, frs)) = None

For example, the operational semantics of Get�eld looks like this:

exec mo :: manipulate object ! heap ! opstack ! nat !

(xcpt option � heap � opstack � nat)

exec mo (Get�eld F C) hp stk pc =

let oref = hd stk;

xp

0

= if oref=Null then Some NullPointer else None;

(oc,fs) = the(hp(the Addr oref));

stk

0

= if xp

0

=None then the(fs(F,C))#(tl stk) else tl stk

in (xp

0

, hp, stk

0

, pc+1)

F is a �eld name and C the de�ning class of the �eld. The top of the operand stack

stk should contain a reference to a class instance stored on the heap hp. In case of

a null reference an exception is thrown. Otherwise, the �elds fs are extracted from

the referenced object. The content of the �eld determined by (F,C) is pushed on the

operand stack. Finally, the program counter pc is incremented.

But what if the stack is empty upon execution of Get�eld? The JVM speci�cation

describes the operational semantics for each instruction in the context of a JVM state

where several constraints hold, e.g. there must be an appropriate number of arguments

on the operand stack, or the operands must be of a certain type. If the constraints

are not satis�ed, the behavior of the JVM is unde�ned. In our approach, we formalize

the behavior of �JVM instructions with total functions. If a state does not satisfy the

constraints of the current instruction, the result is de�ned but we don't know what it

is. For example, the top of an empty operand stack is hd [], but the de�nition of hd

(which we have not shown) only says that hd [] is some arbitrary but �xed value.



Finally, execution of the entire code consists of repeated application of exec as long

as the result is not None. The relation � ` s

jvm

�! t should be read as \In the context

of a �JVM program �, the execution starting with state s leads to t in �nitely many

steps". Its de�nition uses the re
exive transitive closure of successful execution steps:

� ` s

jvm

�! t � (s,t) 2 f(s,s

0

). exec(�,s) = Some s

0

g

�

6.2 The Bytecode Veri�er

An essential part of the JVM is the bytecode veri�er that statically checks several safety-

relevant constraints before execution of the code. One main aspect of the bytecode

veri�er is to statically derive the types of all runtime data and check that all instructions

will receive arguments of the correct type. Hence the bytecode veri�er can be seen as

a type checker (more precisely: a type reconstructor) for the JVM. Therefore it has

become customary to separate the bytecode veri�er into a speci�cation in terms of

a type system and an implementation as a data 
ow analyzer. Thus the correctness

argument for bytecode veri�cation is split in two parts: a type safety proof relating the

type system and the operational semantics, and an implementation proof relating the

type system and the data 
ow analyzer.

6.2.1 Related work

Our approach for the proof of type-safety builds on the work of Qian [Qia99] who

covers a considerably larger subset of the JVM. Closely related is the work by Stata

and Abadi [SA98], who treat subroutines, and the work by Freund and Mitchell [FM98],

who treat object initialization. The correctness of the data 
ow analyzer is analyzed

by Goldberg [Gol98] and, more abstractly, Nipkow [Nip99b]. An unorthodox approach

to bytecode veri�cation via model checking is reported by Basin et al. [BFPV99].

6.2.2 Types and type relations

The static types for the �JVM are the same as for �Java, i.e. of type ty. Thus we

can reuse a number of concepts from the �Java level. The main distinction is that the

JVM allows the type of local variables to change during execution. If at a particular

instruction a local variable may hold values from either of two incompatible types

(because two execution paths lead to this instruction), this local variable will have type

\unusable" at this point. In our formalization we work with the HOL type ty option,

which is either None, representing the unusable type, or Some T, representing type T.

We call these types static types because they are the result of a static analysis of the

program.

The subtype relation is lifted from types to static types as follows: any static type

is a subtype of None (because None represents the set of all types), and otherwise the

subtype relation on ty is simply lifted:

` �

o

:: jvm prog ! ty option ! ty option ! bool

(� ` �

o

None) = True

(� ` None �

o

Some T) = False

(� ` Some T �

o

Some T

0

) = (� ` T�T

0

)



A state type contains type information for all local variables and the operand stack

at a certain program point. The local variables may contain unusable values, whereas

on the operand stack only usable values may be stored.

locvars type = ty option list

opstack type = ty list

state type = opstack type � locvars type

We extend the predicate �

o

in two steps to state types:

` �

l

:: jvm prog ! locvars type ! locvars type ! bool

� ` LT �

l

LT

0

� length LT = length LT

0

^ (8(t,t

0

)2set (zip LT LT

0

). � ` t �

o

t

0

)

` �

s

:: jvm prog ! state type ! state type ! bool

� ` s �

s

s

0

� � ` map Some (fst s) �

l

map Some (fst s

0

) ^ � ` snd s �

l

snd s

0

Type information for the entire code of a method is collected in a value of method

type. A value of class type maps a method signature to a value of method type, and a

value of program type maps a class name to a value of class type:

method type = state type list

class type = sig ! method type

prog type = cname ! class type

6.2.3 Static well-typedness

Given some instruction sequence, the bytecode veri�er has to infer type information for

each instruction, i.e. a method type, such that the whole sequence is well-typed. We

concentrate on what well-typedness means and ignore the computation of the method

type. Let us start by looking at an example of a well-typed instruction sequence.

instruction stack local variables

Load 0 [] [Some(Class B), Some(int)]

Dup [Class A] [Some(Class B), None]

Store 1 [Class A, Class A] [Some(Class B), None]

Invoke m [] [Class A] [Some(Class B), Some(Class A)]

Goto -3 [Class A] [Some(Class B), Some(Class A)]

On the left the instructions are shown and on the right the type of the stack elements

and the local variables (opstack type and locvars type above). The type information

attached to an instruction characterizes the state before execution of that instruction.

We assume that class B is a subclass of A and that A de�nes a method m which takes

no arguments and returns a value of type A.

Execution starts with an empty stack and the two local variables hold a reference

to an object of class B and an integer. The �rst instruction loads local variable 0, a

reference to a B object, on the stack. The type information associated with following

instruction may puzzle at �rst sight: it says that a reference to an A object is on the

stack, and that local variable 1 has become unusable. This means the type information

has become less precise but is still correct: a B object is also an A object, and an integer

is now classi�ed as unusable. Formally: Class B � Class A and Some(int) �

o

None. The

reason for these more general types is that the predecessor of the Dup instruction may

have either been Load 0 or Goto -3. Since there exist di�erent execution paths to reach

Dup, the type information of the two paths has to be \merged". The type of the second

local variable is either int or Class A, which are incompatible, i.e. the only common

supertype is None.



Apart from this complication, the type of the stack elements and the local variables

changes as expected. It now remains to specify formally when an instruction sequence

is well-typed w.r.t. a method type.

We start by de�ning a predicate that checks whether an instruction at a certain

program point is well-typed with respect to a given method type. Additionally, it

checks several other constraints, e.g. an index to a local variable must not be greater

than the number of local variables and the program counter must remain within the

current method. These constraints are indispensable to carry out the soundness proof

for the bytecode veri�er. The type-checking predicate makes a case distinction over the

instruction to be executed at the current program point. We only show the Load case:

wt instr :: instr ! jvm prog ! ty ! method type ! nat ! nat ! bool

wt instr (LS(Load i)) � sts max pc pc =

let (ST,LT) = sts!pc

in pc+1 < max pc ^ i < length LT ^

(9T. LT !i = Some T ^ � ` (T#ST , LT) �

s

sts!(pc+1))

The above predicate enforces that there is a next instruction (pc+1 < max pc), that the

local variable to be loaded exists (i < length LT) and is usable (LT !i = Some T), and

that the new state type (T#ST, LT) is a subtype of the state type associated with the

successor instruction. We cannot ask for equality here because that next instruction

can have other predecessors as well.

The well-typedness checks for all instructions except Return follow the above schema:

there are some instruction-speci�c conditions and the general requirement that for each

successor instruction pc

0

and corresponding successor state st

0

both pc

0

< max pc and

� ` st

0

�

s

sts!pc

0

hold.

Step by step, we now extend the notion of well-typedness to methods, classes, and

programs. At the start of the execution of a method, the operand stack must be empty,

and the local variables must contain values according to the type of the current class

C (local variable 0 holds this), the parameter types pTs of the current method, and

None for all other local variables, because the �JVM (as the JVM) does not initialize

the other local variables automatically (replicate i x produces a list of i copies of x):

wt start :: jvm prog ! cname ! ty list ! nat ! method type ! bool

wt start � C pTs mxl � �

� ` ([], Some(Class C)#(map Some pTs)@(replicate mxl None)) �

s

�!0

The body of a method must be non-empty. A method is well-typed with respect to a

method type �, if it is well-typed at the beginning of the method body, and if for every

program point in the method body the instruction is well-typed:

wt method :: jvm prog ! cname ! ty list ! ty ! nat ! instr list ! method type ! bool

wt method � C pTs rT mxl ins � �

let max pc = length ins

in 0 < max pc ^ wt start � C pTs mxl � ^

(8pc<max pc. wt instr (ins!pc) � rT � max pc pc)

As jvm prog is an instance of the parameterized type prog of program skeletons,

well-typedness of �JVM programs is de�ned with the help of the parameterized well-

formedness predicate wf prog for program skeletons (see x5.6.1). We simply feed a

suitably instantiated version of wt method to wf prog:

wt jvm prog :: jvm prog ! prog type ! bool

wt jvm prog � � �

wf prog (�� C (sig,rT,maxl,b). wt method � C (snd sig) rT maxl b (� C sig)) �

This is in complete analogy with the de�nition of wf java prog in x5.6.3.



6.3 The proof of type-safety

A bytecode veri�er (or more abstractly: a type system) statically determines the types

of all runtime data. A type system is sound if the statically predicted type gives a

correct approximation of the runtime value produced during execution. Thus we �rst

need to de�ne this approximation relationship for the various runtime data and types

in the �JVM. This means lifting the relation ::� already de�ned at the �Java level

(see x5.8.2) to complex data structures containing values and types.

The unusable type None approximates any value; a static type Some T approximates

value v if v conforms to T:

approx val :: jvm prog ! heap ! val ! ty option ! bool

approx val � h v None = True

approx val � h v (Some T) = (�,h`v ::�T)

This relation is lifted pointwise to local variables and the operand stack:

approx loc :: jvm prog ! heap! val list ! locvars type ! bool

approx loc � hp loc LT � length loc = length LT ^

(8(val,t)2set(zip loc LT). approx val � hp val t)

approx stk :: jvm prog ! heap ! opstack ! opstack type ! bool

approx stk � hp stk ST � approx loc � hp stk (map Some ST)

The proof of type-safety follows the same pattern as the one for �Java: we show

that if we start in a correct state and execute an instruction of a well-typed program,

we again end up in a correct state. A correct state is one where the program type

approximates all the runtime data in the state. Unfortunately, this notion of a correct

state is too weak to make the above implication true|a typical example of an invariant

that needs strengthening. One has to take into account that the frames on the frame

stack are not unrelated but look roughly like this: the top element is the currently

executing frame, which can be at any program point, but the remaining frames are all

snapshots taken directly after an Invoke instruction. If we do not take this property into

account, it becomes impossible to show that the Return instruction preserves correctness

of states. Because of this di�erence between the top frame and the rest, correctness of

a state treats the top frame separately:

correct state :: jvm prog ! prog type ! jvm state ! bool

correct state � � (None,hp,f#fs) = � `

h

hp

p

^ (let (stk,loc,C,sig,pc) = f

in 9rT maxl ins. method (�,C) sig = Some(C,rT,(maxl,ins)) ^

correct frame � hp ((� C sig)!pc) maxl ins f ^ correct frames � hp � rT sig fs)

correct state � � (None ,hp,[]) = True

correct state � � (Some x,hp,fs) = True

Correctness of a single frame requires the stack and heap data to be approximated

by the corresponding state type. Additionally, the program counter should point at a

valid instruction and the actual number of local variables should be as described by the

method de�nition:

correct frame :: jvm prog ! heap ! state type ! nat ! bytecode ! frame ! bool

correct frame � hp (ST,LT) maxl ins (stk,loc,C,sig,pc) �

approx stk � hp stk ST ^ approx loc � hp loc LT ^

pc < length ins ^ length loc = length (snd sig) + maxl + 1



Predicate correct frames, which checks the correctness of a stack of pending frames, takes

as an argument the return type and the signature of the method executing in the frame

directly above, in order to check that it matches the information in the pending frame

below. This check is performed recursively through the frame stack:

correct frames :: jvm prog ! heap ! prog type ! ty ! sig ! frame list ! bool

correct frames � hp � rT0 sig0 [] = True

correct frames � hp � rT0 sig0 (f#frs) =

let (stk,loc,C,sig,pc) = f;

(ST,LT) = (� C sig) ! pc

in

(9rT maxl ins. method (�,C) sig = Some(C,rT,(maxl,ins)) ^

(9mn pTs k. pc = k+1 ^ ins!k = MI(Invoke mn pTs) ^ (mn,pTs) = sig0 ^

(9apTs D ST

0

. fst((� C sig)!k) = (rev apTs) @ (Class D) # ST

0

^

length apTs = length pTs ^

(9D

0

rT

0

maxl

0

ins

0

. method (�,D) sig0 = Some(D

0

,rT

0

,(maxl

0

,ins

0

)) ^ � ` rT0�rT

0

) ^

correct frame � hp (tl ST, LT) maxl ins f ^

correct frames � hp � rT sig frs)))

This predicate needs some explanation. We discuss its body step by step. It requires

that:

� a method with signature sig is de�ned in class C;

� the instruction to be executed is preceded by an Invoke instruction which invokes

a method with signature sig0 (from the frame above);

� the opstack type-part of the state type for the Invoke instruction consists of a list

of actual argument types apTs in reverse order, followed by a class D and some

remaining stack type;

� the length of the actual and the formal parameter lists agree;

� a method with signature sig0 (executing in the frame above) is de�ned in some

class D

0

above D with a return type that is a supertype of the return type of the

actual method executing in the frame above;

� the frame itself is correct, as are the frames below. The current frame is checked

against tl ST because its operand stack does not yet contain the return value of

the method it invoked.

This is more complicated than the corresponding predicate in [Pus99] because the Invoke

instruction does not carry around the de�ning class of the method any more. This loss

of static information (wt instr) requires the invariant (correct frames) to be strengthened.

Now we can prove the following main type-safety theorem, the preservation of the

invariant correct state:

wt jvm prog � � ^ correct state � � s ^ exec(�,s) = Some s

0

�! correct state � � s

0

It is shown by a case distinction over the instructions. Most instructions are routine

and many are proved automatically (once the necessary lemmas have been identi�ed!).

Invoke, however, requires fairly subtle reasoning involving key properties of the type

system. The �nal corollary follows easily:

wt jvm prog � � ^ correct state � � s ^ � ` s

jvm

�! t �! correct state � � t



7 Conclusion

We have given the reader a guided tour of a formal de�nition of �Java and the �JVM,

their type safety proofs and the supporting theorem proving technology. Although

�Java is a very impoverished version of Java, it should have convinced the reader of the

main claim, that theorem provers are suitable tools for the analysis of programming

language semantics. Further aspects of Java (a compiler and a Hoare logic|see [Ohe99]

for a preliminary report) have been formalized as well, thus making �Java a non-

trivial example of a formalized programming language. We believe that any serious

programming language deserves such formal de�nition and analysis.
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