Hoare Logic for NanoJava: Auxiliary Variables,
Side Effects and Virtual Methods revisited

David von Oheimb and Tobias Nipkow
http://isabelle.in.tum.de/Bali/

Fakultat fir Informatik, Technische Universitdt Miinchen

Abstract. We define NanoJava, a kernel of Java tailored to the inves-
tigation of Hoare logics. We then introduce a Hoare logic for this lan-
guage featuring an elegant approach for expressing auxiliary variables:
by universal quantification on the outer logical level. Furthermore, we
give simple means of handling side-effecting expressions and dynamic
binding within method calls. The logic is proved sound and (relatively)
complete using Isabelle/HOL.

Keywords: Hoare logic, Java, Isabelle/HOL, auxiliary variables, side
effects, dynamic binding.

1 Introduction

Java appears to be the first widely used programming language that emerged at
a time at which formal verification was mature enough to be actually feasible.
For that reason the past few years have seen a steady stream of research on Hoare
logics for sequential parts of Java [24,7,6,9,21,22], mostly modeled and analyzed
with the help of a theorem prover. Since even sequential Java is a formidable
language in terms of size and intricacies, there is no Hoare logic for all of it as
yet. In terms of language constructs, von Oheimb [22] covers the largest subset
of Java. However, as a consequence, this Hoare logic is quite complex and it
is difficult to see the wood for the trees. Therefore Nipkow [17] selected some
of the more problematic or technically difficult language features (expressions
with side effects, exceptions, recursive procedures) and dealt with their Hoare
logics in isolation. Although each of these features admits a fairly compact proof
system, it remains to demonstrate that their combination in one language is still
manageable.

In a sense, NanoJava has been designed with the same aim as Featherweight
Java [8]: to have a kernel language for studying a certain aspect of Java. In the
case of Featherweight Java, Java’s module system is under scrutiny, in NanoJava
it is Hoare logic. This explains why, despite of some similarities, we could not
just start with Featherweight Java: it was designed for a different purpose; being
purely functional, it would not have done us any good.

Starting from pJava [18] we have isolated NanoJava, a Java-like kernel of an
object-oriented language. The purpose of this paper is to present the language

NanoJava as a vehicle to convey new techniques for representing Hoare logics
(for partial correctness). Next to the Hoare logic we give also an operational
semantics such that we can conduct soundness and completeness proofs. Because
such proofs have a checkered history in the literature (e.g. the proof system for
recursive procedures by Apt [3] was later found to be unsound [2]), the whole
development was carried out in the theorem prover Isabelle/HOL [19]. In fact,
this very paper is generated from the Isabelle theories, which are documents
that can both be machine-checked and rendered in KXTEX. Thus every formula
quoted in this paper as a theorem actually is one. The full formalization including
all proofs is available online from http://isabelle.in.tum.de/library/HOL/
NavoJava/.

Our general viewpoint on Hoare logic is that when conducting rigorous analy-
sis (using a theorem prover or not), in particular metatheory, making the depen-
dency of assertions on the program state is indispensable. Furthermore, syntactic
treatments of assertions lead to awkward technical complications, namely term
substitutions and syntactic side conditions like variable freshness hard to deal
with in a fully formal way. Thirdly, for our purposes, constructing and using an
assertion language of its own rather than re-using the metalogic for expressing
assertions would only add unnecessary clutter. For these reasons, we use a se-
mantic representation of assertions. Doing so, we can in particular replace fresh
variables by (universally) bound variables and term substitutions by suitable
state transformations.

Compared with previous Hoare logics, in particular fully rigorous ones like
[10,21], we introduce the following technical innovations: auxiliary variables are
hidden via universal quantification at the meta-level; side-effecting expressions
are treated more succinctly; the treatment of dynamic binding by von Oheimb is
combined with the idea of virtual methods (a conceptually important abstraction
enabling modular proofs) by Poetzsch-Heffter [24]. The latter technique may
be applied to other object-oriented languages as well, whereas the enhanced
treatment of side effects and in particular of auxiliary variables applies to Hoare
logics for imperative languages in general.

1.1 Related work

Both Huisman and Jacobs [7] and Jacobs and Poll [9] base their work on a kind
of denotational semantics of Java and derive (in PVS and Isabelle/HOL) a set of
proof rules from it. They deal with many of the complexities of Java’s state space,
exception handling etc., but without (recursive) method calls. Therefore their
rules and ours are quite incomparable. Neither do they investigate completeness.
Their rationale is that they can always fall back on the denotational semantics
if necessary.

Poetzsch-Heffter and Miiller [24] present a Hoare logic for a kernel of Java and
prove its soundness. In contrast to our semantic approach to assertions, which
is most appropriate for meta theory as our primary concern, they emphasize
tool support for actual program verification and use a syntactic approach. This
has drawbacks for meta theory, but in the other hand side allows a more or

http://isabelle.in.tum.de/library/HOL/NavoJava/
http://isabelle.in.tum.de/library/HOL/NavoJava/

less implicit use of auxiliary variables. More recently, Poetzsch-Heffter [23] has
extended this work to a richer language and has also proved completeness. His
rules are quite different from ours. In particular he does not use our extended
rule of consequence but combines the usual consequence rule with substitution
and invariance rules.

Other axiomatic semantics for object-oriented languages include the one by
Leino [13], who does not discuss soundness or completeness because he considers
only a weakest precondition semantics, and the object-calculus based language
by Abadi and Leino [1], who state soundness but suspect incompleteness.

Kleymann [10,11] gives a machine-checked Hoare logic for an imperative lan-
guage with a single procedure without parameters, in particular motivating the
use of auxiliary variables.

2 NanoJava

We start with an informal exposition of NanoJava. Essentially, NanoJava is
Java with just classes. Statements are skip, sequential composition, conditional,
while, assignments to local variables and fields. Expressions are new, cast, access
to local variables and fields, and method call. The most minimal aspect is the
type system: there are no basic types at all, only classes. Consequently there
are no literals either; the null reference can be obtained because variables and
fields are initialized to null (and need not be initialized by the programmer).
As there are no booleans either, conditionals and loops test references for being
null (in which case the loop terminates or the else-case is taken).

Because of the restriction to references as the only type, it may not be im-
mediately apparent that NanoJava is computationally complete. Figure 1 shows
how natural numbers can be simulated by a linked list of references. The natural
number n is implemented by a linked list of n 4+ 1 Nat-objects: 0 is implemented
by new Nat() (initializing pred to null), and +1 by suc (which appends one
object to the list). Given two Nat-objects m and n, m.eq(n) determines if m and
n represent the same number, and m.add(n) adds m to n non-destructively, i.e.
by creating new objects.

3 Abstract syntax

Here we begin with the formal description of NanoJava. We do not show the full
formalization in Isabelle/HOL but only the most interesting parts of it.

3.1 Terms

Programs contain certain kinds of names, which we model as members of some
not further specified types. For the names of classes, methods, fields and local
variables we use the Isabelle types cname, mname, fname and wvname. It is

class Nat {
Nat pred;

Nat suc()
{ Nat n = new Nat(); n.pred = this; return n; }

Nat eq(Nat n)
{ if (this.pred) if (n.pred) return this.pred.eq(n.pred);
else return n.pred;
else if (n.pred) return this.pred; else return this.suc(); }

Nat add(Nat n)
{ if (this.pred) return this.pred.add(n.suc()); else return n; }

Fig. 1. Emulating natural numbers

convenient to extend the range of “normal” local variables with special ones
holding the This pointer, the (single) parameter and the result of the current
method invocation, whereby for simplicity we assume that each method has
exactly one parameter, called Par.

Using the concepts just introduced, we can define statements and expressions as

datatype stmt

= Skip

| Comp stmt stmt (5 2)

| Cond expr stmt stmt (If '(_") _ Else .)

| Loop vname stmt (While '())
LAss vname expr (=) — local assignment
FAss expr fname expr o= — field assigment
Meth cname X mname — virtual method
Impl cname X mname — method implementation

and expr

= NewC cname (new _)

| Cast cname expr

| LAcc vname — local access

| FAcc expr fname () — field access

| Call cname expr mname expr ({-}-._'(_"))

The symbols in parentheses on the right hand side specify alternative mixfix
syntax for some of the syntactic entities. Virtual methods Meth and method
implementations Impl are intermediate statements that we use for modeling
method calls, as will be explained in §4.2. The first subterm C of a method
call expression {C'}e.m(p) is a class name holding the static type of the second
subterm e. It will be used as an upper bound for the type dynamically computed
during a method call.

3.2 Declarations

The only types we care about are classes and the type of the null pointer:
datatype ty = NT | Class cname

Programs are modeled as lists of class declarations, which contain field and
method declarations. The details of their definition and the functions for access-
ing them are suppressed here as they are of little relevance for the Hoare logic.
Also for reasons of space, we gloss over the definitions of type relations as well as
the few concepts of well-structuredness required for technical reasons [21, §2.6.4].

Due to our defensive operational semantics given next, the typical notions of
well-formedness and well-typedness are not required at all.

4 Operational Semantics

We employ an operational semantics as the primary semantical description of
NanoJava. It is more or less standard and thus we can afford to give just the
most essential and interesting aspects here.

4.1 Program State

The only values we deal with are references, which are either the null pointer or
an address, i.e. a certain location (of some not further specified type loc) on the
heap:

datatype val = Null | Addr loc

The program state can be thought of as an abstract datatype state for storing
the values of the local variables (of the current method invocation) as well as
the heap, which is essentially a mapping from locations to objects. There are a
number of access and modification functions on the state. We typically introduce
them on demand, except for two simple ones: s{x) stands for the value of the
program variable z within state s, and lupd(z+—wv) s for the state s where the
value v has been assigned to the local variable z. The actual definitions of these
auxiliary functions are not needed for the meta-theoretic proofs in this paper.

4.2 Evaluation rules

We write s —c—n— s’ to denote that execution of the statement ¢ from state s
terminates with final state s’. The natural number n gives additional information
about program execution, namely an upper bound for the recursive depth. This
annotation will be required for the soundness proof of the Hoare logic. The eval-
uation of an expression e to a value v is written analogously as s —e~v—n— s".

Here we give only a selection of the most interesting non-standard execution
rules.

For simplicity, and since we do not consider exceptions, we define our semantics

in a defensive way: when things go wrong, program execution simply gets stuck.

For example, evaluation of a field access e.f from an initial state s terminates

in state s’ if (and only if) the reference expression e evaluates to an address q,

transforming the state s into s’, and yields the value get_field s’ a f (which is

the contents of field f within the object at heap location a of the state s’):
FAcc: s —e=Addr a—n— s’ => s —e.f~get field s’ a f—n— s’

The most complex rules of our Hoare logic are those concerning method calls.
Therefore we give their operational counterparts here first, which should be easier
to understand, in order to introduce the basic semantic concepts behind them.
As opposed to the rules for method calls we gave in earlier work, the Call rule
given here is restricted to argument and result value passing (i.e., the context
switch between caller and callee) whereas dynamic binding is handled by the
Meth rule given thereafter. This not only makes the (still rather formidable)
rule a bit simpler, but — more importantly — supports the concept of wvirtual
methods [24].

The virtual method Meth(C,m) stands for the methods with name m avail-
able in class C' (and possibly inherited in any subclass) as well as all methods
overriding it in any subclass. In other words, the properties of Meth(C,m) are
the intersection of all properties of method implementations possibly invoked
(through dynamic binding) for invocations of m from a reference with static
type C. Virtual methods enable not only the usual method specifications from
the callee’s point of view (involving in particular the local names of the method
parameters!) but uniform verification of method calls from the caller’s view.

Call: [s0 —el>=a—n— sl; s1 —e2=p—n— s2;
lupd (This— a)(lupd (Par+—p)(del_locs s2)) —Meth(C,m)—n— s8 | =
s0 —{C}el.m(e2)>s3(Res)—n— set_locs s2 s8

First a notational remark: in a rule of the form [Ay; Ao; ... 4, | = C, the
formulas A; are the premises and C is the conclusion. After evaluating the refer-
ence expression el and the (single) argument expression e2, the local variables
of the intermediate state s2 are deleted and the values of the parameter value
and the This pointer are inserted as new local variables. After the corresponding
virtual method has been called, its result is extracted as the value of the method
call and the original local variables of s2 are restored in the final state s3. Note
that the first parameter of the auxiliary function set_locs is the whole state value
rather than just the local variable part of it. We decided to do so in order to be
able to keep the structure of type state opaque.

Meth: [s{This) = Addr a; D = obj_class s a; D <¢ C}
init_locs (D,m) s —Impl(D,m)—n— s'] =
s —Meth(C,m)—n— s’

! Note that here, as well as in [24], matters are somewhat simplified because the
method parameter names are the same for all methods.

Evaluating the virtual method Meth(C,m) means extracting the address a of the
receiver object (from the This pointer), looking up its dynamic type D, which
must be a subclass of C, and calling the implementation of m available in class
D (after initializing its local variables).

Impl: s —body Cm—n— s’ —>
s —Impl Om—n+1— s’
The only thing that remains to be done for a method call is to unfold the method
body, using a suitable auxiliary function body which yields the corresponding
(typically compound) statement. Note the increase of the recursive depth from
n to n + (1::’a). The pair of method class and name is represented by the single
free variable C'm. One might think of merging the Impl and Meth rules, but it
makes sense to keep virtual methods and method implementations apart in order
to separate concerns, which pays off in particular for the axiomatic semantics.

5 Hoare logic concepts

This section and the following one form the core of this article. First, we describe
important basic concepts of our axiomatic semantics of NanoJava.

5.1 Assertions

One of the most crucial concepts of a Hoare logic is the notion of assertions
used as propositions on the program state before and after term execution. The
assertion language and its underlying logic strongly determine the expressiveness
and completeness of the resulting verification logic.

We take a semantic view of assertions, thus an assertion is nothing but a
predicate on the state:

types assn = state = bool

This technique, already used in [15], short-circuits the logic used for the asser-
tions with the logic of the underlying proof system, in our case Isabelle/HOL.
Thus we do not have to invent a new assertion logic and worry about its expres-
siveness, and our notion of completeness will be relative in the sense of Cook [4].

5.2 Side Effects

Since expressions can have side effects, we need a Hoare logic for expression
evaluation as well. For a review of different approaches to this issue, see [22,
§4.3]. In essence, assertions used in connection with expressions must be able to
refer to the expression results. Kowaltowski [12] shows how to achieve this for
a syntactic view on assertions. Since we prefer a semantic view, we can avoid
technical complications with substitutions and variable freshness conditions (cf.
§6.3), and assertions simply receive the current result as an extra parameter:

types vassn = val = assn

Having decided on the assertion types, we can define the Hoare triples for
statements and expressions as follows:

types
triple = assn X stmt X assn
etriple = assn X expr X wvassn

In the approach that we promoted in [22, §4.3], the type vassn is used not
only in the postconditions, but also in the preconditions of etriples. This was
just for uniformity reasons, and in our definition of validity of such triples given
in [22, §6.1], the value parameter was effectively ignored for the precondition.
The variant given here is simpler.

5.3 Auxiliary Variables

The most notable novelty and simplification (as compared to the approach pro-
moted by Kleymann [11]) achieved by the work presented here concerns the
representation of auxiliary variables.

Auxiliary variables are required to relate values between pre- and postcondi-
tions. For example, in the triple {z=Z2} y:=42 {x=Z} the (logical) variable Z is
used to remember the value of the program variable z, such that one can express
that = does not change while y is assigned to. From the logical point of view, Z
is implicitly universally quantified, which has to take place somewhere outside
the triple such that both occurrences are bound. In case the whole triple oc-
curs negatively (e.g., as an assumption as will be required for handling recursive
methods), care is needed to put the quantifier not too far outside.

In [22, §4.2 and §6.1], we followed Kleymann implementing auxiliary variables
by extra parameters of assertions that are universally quantified within the defi-
nition of validity. Here, in contrast, we leave auxiliary variables and the universal
quantifications on them as implicit as possible. That is, auxiliary variables are
mentioned in assertions only when they are actually needed, and explicit uni-
versal quantification is used only if the concerning triple appears negatively. In
other words, we leave the mechanism for dealing with auxiliary variables to the
outer logical level.

6 Hoare logic rules

This section gives the full list of Hoare logic rules the constitute the axiomatic
semantics of NanoJava.

We write A |- C to denote that from the antecedent A (acting as a set of
assumptions) the consequent C' can be derived. Both sets consist of statement
triples, i.e. the relation _ |- _ has type (triple set x triple set) set. If the set C
contains just a single triple, we write A - {P} ¢ {Q}. For expression triples,
we use the relation _ |, _ of type (triple set x etriple) set.

6.1 Structural rules

We require only a few structural, i.e. non-syntax-directed rules. The first one is
the assumption rule:

Asm: [a€ A] = A | {a}

The next two are used to construct and destruct sets in the consequent, i.e. to
introduce and eliminate conjunctions on the right-hand side:

CongI: [Vece C. Al {c}] = A|F C

ConjE: [A |- C;ce C) = Al {c}

The final two rules are a further development of the consequence rule due to
Morris [14], championed by Kleymann [11], and re-formulated by Nipkow [17].

Conseq: [VZ. A {P'Z} ¢ {Q' Z};
Vst.WZ.P'Zs — Q'"Zt)— (Ps— Q1t)] =
AR AP} c{Q}

eConseq: [VZ. Al {P'Z} e {Q' Z};
Vsvt. (VZ.P'Zs — Q" Zvt) — (Ps— Qut)] =
AF {Py e {Q}
Within these two rules, as usual the use of auxiliary variables Z partially has
to be made explicit in order to allow the adaptation (i.e., specialization with
different values) of auxiliary variables for the assertions P’ and @’. The explicit
universal quantification on Z in the first premise of each rule is required just
because the appearances of Z are on the implication-negative side and thus im-
plicit quantification would be existential rather than universal. Still, due to our
new approach to auxiliary variables and side-effecting expressions, these rules
are simpler than those given e.g. in [21,22]: they are closer to the well-known
standard form of the consequence rule and require fewer explicit quantifications.

6.2 Standard rules

The rules for standard statements and expressions appear (almost) as usual,
except that side effects are taken into account for the condition of If - Then _
Else and for variable assignments. Thus we comment only on those parts of the
rules deviating from the standard ones.

Skip: A | {P} Skip {P}

Comp: [A |- {P} e1 {Q}: A} {Q} c2 {R}] —
A {P} c1; c2 {R}

LAcc: Al {)s. P (s(z)) s} LAcc x {P}
The rule for access to a local variable z is reminiscent of the well-known as-
signment rule: in order to derive the postcondition P, one has to ensure the
precondition P where the current value of z is inserted for its result parameter.
The lambda abstraction (and later application again) on s is used to peek at the
program state.

LAss: [A e {P} e {Mvs. Q (lupd(z—v))} | =
AF {P} a=c {Q}

In the postcondition of the premise of the LAss rule, we can refer to the result
of e via the lambda abstraction on v. This value is used to modify the state at
the location z before it is fed to the assertion Q.

Cond: [A f=c {P} e {Q};
Vu. A {Q v} (if v # Null then ci else c2) {R} | =
A {P} If(e) cl Else c2 {R}

The second premise of the Cond rule can handle both branches of the condi-
tional statement uniformly by employing the if _ then _ else _ of the metalogic
HOL. This is possible because the statement between the pre- and postcondi-
tion is actually a meta-level expression that can depend on the value v of the
condition e, as obtained through the precondition @ v . Note that the universal
quantification over v around the triple makes v available throughout the triple,
in particular the statement expression in the middle.

This technique for describing the dependency of program terms on previously
calculated values, which will be crucial for handling dynamic binding in the Meth
rule below, has been introduced in [21, §5.5]. If we had standard Booleans, we
could expand all possible cases for v (viz. true and false) and write the Cond
rule in the more familiar way:

[A . {P} e {Q); A |- {Q true} cf {R}; A |- {Q false} c2 {R}]

= A | {P} If (e) cI Else c2 {R}

Loop: [A |- {\s. P s A s(z) # Null} ¢ {P}] =
A b {P} While(z) ¢ {\s. P s A s{z) = Null}

The Loop rule appears almost as usual except that we consider the loop condition
to be fulfilled as long as the given program variable holds a nonzero reference.
Allowing for arbitrary side-effecting expressions as loop conditions is possible
[22, §9.1] but not worth the technical effort.

6.3 Object-oriented rules

The rules dealing with object-oriented features are less common and therefore
deserve more comments. Where needed, we introduce auxiliary functions on the
program state on the fly.

FAcc: [A e {P} e {\vs. Va. v=Addr a — Q (get_field s a f) s} | =

Al {P}ef{Q}

The operational semantics for field access given in §4.2 implies that in order
to ensure the postcondition @ it is sufficient that as the postcondition of the
reference expression e, () holds for the contents of the field referred to, under
the assumption that the value of e is some address a.

FAss: [A {P} el {Dvs.Ya. v=Addr a — Q a s};
Va. A {Qa} e2 {Mvs. R (updobjafuvs)}]—=
Al {P} el.f=e2 {R}

Field assignment handles the value of the reference expression ef in the same
way except that the address a has to be passed to the triple in the second
premise of the rule. We achieve this by passing a as an extra parameter to the
intermediate assertion () and universally quantifying over ¢ around the second
triple. This technique, which will be applied also for the Call rule below, uses only
standard features of the metalogic and is therefore technically less involved than
the substitutions to fresh intermediate variables, as employed by Kowaltowski
[12]. The auxiliary function upd_obj a f v s updates the state s by changing the
contents of field f (within the object located) at address a to the value w.
NewC: A |- {)\s. Va. new Addr s = Addr a — P (Addr a) (new_obj a C s)}
new C {P}

The rule for object creation uses the functions new_Addr selecting a vacant
location a on the heap (if possible) as well as new_-obj a C' s which updates the
state s by initializing an instance of class C' and allocating it at address a. Note
that the result of the new C expression is the value Addr a, given to P as its
first argument.
Cast: [A b-c {P} e {\v s. (case v of Null = True
| Addr a = obj_class s a =¢ C) — Qus}]| =

Al {P} Cast Ce {Q}

In our operational semantics, evaluating a type cast gets stuck if the dynamic
type of the object referred to is not a subtype of the given class C. Thus the
postcondition @) in the rule’s premise needs to be shown only if the value of the
reference is a null pointer or the type given by obj_class s a is a subclass of C.

Call: [A {P} el {Q};
Va. AFe {Qa} e2 {R a};
Vapls. Al {\s". Is. RapsAls=sA
s’ = lupd(Thisr—a)(lupd(Par—p)(del_locs 5))}
Meth(C,m) {Xs. S (s(Res)) (set-locs ls s)} | =

Al {P} {C}el.m(e2) {S}

The rule for method calls closely resembles the operational semantics, too. The
values of both subexpressions are passed on like in the FAss rule above. A third
universal quantification is needed in order to transfer the value Is of the existen-
tially quantified pre-state s (before the local variables are modified, resulting in
state s’) to the postcondition of the third triple where the original local variables
have to be restored.

Meth: [V D. A= {Xs’. 3s a. s{(This) = Addr a A D = obj.class s a A D =¢c C A

P s A s’ =initlocs (D,m) s} Impl(D;m) {Q}]| =
At {P} Meth(Cm) {Q)

The rule for virtual methods requires proving the desired property for all method
implementations possibly called when taking dynamic binding into account. This
is equivalent to the combination of the class-rule and subtype-rule (plus some
structural rules) given in [24], except that the set of implementations is con-

strained not only by the dynamic type D of the This pointer, but also by the
set of subclasses of C.

This new combination of techniques dealing with dynamic binding has the fol-
lowing advantages. In contrast to the rules given in [24], the variety of possible
implementations is captured by a single rule, and the user may immediately
exploit the fact that this variety is bound by the statically determined class C.
In contrast to the version given in [21,22], the abstraction of a virtual method
allows one to prove the properties of such methods once and for all (indepen-
dently of actual method calls) and exploiting them for any number of method
calls without having to apply the Meth rule again.

Method implementations are handled essentially by unfolding the method bod-
ies. Additionally, as usual, the set of assumptions A has to be augmented in
order to support recursive calls. For supporting mutual recursion, it is further-
more very convenient to handle a whole set of methods Ms simultaneously [20].

[AU (UZ. ACm. (P Z Cm, Impl Cm, Q Z Cm))‘Ms) |
UZ. ACm. (P Z Cm, body Cm, Q Z Cm))‘Ms) | =
Al UZ. ACm. (P Z Cm, Impl Cm, Q Z Cm))‘Ms)

Recall that each Cm € Ms is a method identifier consisting of a class and method
name. For any f, the HOL expression f * Ms denotes the set of all f C'm where Cm
€ Ms. Thus each term (A\Cm. (P Z Cm, ... Cm, Q Z Cm))‘Ms denotes a set, of
triples indexed by Cm ranging over Ms. The use of auxiliary variables Z has to
be made explicit here because the additional assumptions, namely that the im-
plementations involved in any recursive invocations already fulfill the properties
to be proved, have to be available for all Z. Within antecedents, this universal
quantification can be expressed using the set union operator | J Z, and for uni-
formity we have written the other two quantifications the same way. Note that
the semantics of forming a union of sets of Hoare triples is logical conjunction
and thus is essentially the same as when using an universal quantifier, which is
not possible within the antecedents part of the derivation relation |}-.

There is a variant of the above rule more convenient to apply. Wherever possible,
it uses the standard universal quantifier or even makes quantification implicit:

Impl: [VZ2. AU (U Z1. (A\Cm. (P Z1 Cm, Impl Cm, Q Z1 Cm))‘Ms) |
(ACm. (P Z2 Cm, body Cm, Q Z2 Cm))‘Ms | =
A | (ACm. (P Z3 Cm, Impl Cm, Q Z3 Cm))‘Ms

7 Example

As an example of a proof in our Hoare logic we formalize (part of) the definition
of class Nat given in §2 and prove that the virtual method add is homomorphic
wrt. lower bounds:

{3 F {Xs. s:8(This) > X A s:s(Par) > Y} Meth(Nat,add) {\s. s:s(Res) > X+Y}

where the relation s:v > n means that the value v represents at least the
number n, i.e. within state s, the chain of Nat-objects starting with v has more

than n elements. We consider the lower bound rather than the exact element
count in order to avoid problems with non-well-founded chains, e.g. circular ones.

The above proposition is typical for a method specification, in two senses.
First, it refers to local variables (including the pointer to the receiver of the
method call, the parameter and the result variables) from the perspective of the
called method. Second, it makes essential use of auxiliary variables (X and Y,
bound at the meta-level): if This initially represents at least the number X and
Par the number Y, then the result of the method represents at least X + Y.

The proof consists of 56 user interactions including 32 Hoare logic rule ap-
plications (with 6 explicit instantiations of assertion schemes, while all remain-
ing ones are computed by unification). We further make use of many simple
properties of the functions acting on the program state and a few properties
of the relation _:- > _. We comment only on the most interesting of the 32
major steps here. For details see http://isabelle.in.tum.de/library/HOL/
NanoJava/Example.html.

Steps 1-3 are the application of the Meth and Conseq rule and the admissible
rule A - {Xs. False} ¢ {Q}. Dynamic binding is trivial here because Nat
does not have subclasses. Thus after some cleanup, our goal reduces to

O F {Xs. s:8(This) > X A s:s{Par) > Y} Impl(Nat,add) {)s. s:s(Res) > X+Y}

Step 4 is to apply a derived variant of the Impl rule and to unfold the method
body, which yields

UX,Y). {AX Y} {rs. s:5(This) > n A s:s(Par) > m}
If (LAcc This.pred) Res = {Nat}LAcc This.pred.add({Nat}LAcc Par.suc(<>))
Else Res = LAcc Par {)s. s:s(Res) > n+m}
where A X Y is the single triple appearing as the conclusion of Step 3 which
now acts as assumption for any recursive calls of Impl(Nat,add).
Steps 5-12 simply follow the syntactic structure of the NanoJava terms and
arrive at the recursive call of add:

v # Null = (|J(X,Y). {4 X Y}) F=c {Xs. s:5(This) > n A s:s(Par) > m A
(Fa. s(This) = Addr a N\ v = get_field s a pred)} {Nat}LAcc This.pred.
add({Nat}LAcc Par.suc(<>)) {\v s. lupd(Res—v) s:v > n+m}

Steps 13 applies the Call rule, giving suitable instantiations for the new inter-
mediate assertions @ and R.

Steps 14-16 deal with evaluating the receiver expression of the call to add.

Steps 17-19 apply the Meth rule to the second subgoal, which concerns the
term Meth(Nat,add), and after some post-processing this subgoal becomes

v # Null = ((J(X,Y). {A X Y}) |- {?P} Impl(Nat,add) {?Q}

where ?P and 7@ are assertion schemes that may depend on n and m.
Step 20 is the most interesting one of this example: It applies the Asm rule
after explicitly specializing the universally quantified pair of values (X, Y)
to (if n=0 then 0 else n—1, m+1). Recall that n and m are the lower bounds
for This and Par within the current invocation of add.
Steps 21-32 deal with evaluating the parameter expression of the call to add.
This is analogous to the steps before except that no recursion is involved.

http://isabelle.in.tum.de/library/HOL/NanoJava/Example.html
http://isabelle.in.tum.de/library/HOL/NanoJava/Example.html

8 Equivalence of Operational and Axiomatic Semantics

8.1 Validity

We define validity of Hoare triples with respect to the operational semantics
given in §4. The validity of statements is the usual one for partial correctness:

E{P}c{Q} = Vst.Ps— (In.s —c—n—1t) — Q¢

The improvement here in comparison to [22, §6] is that the references to auxiliary
variables Z are not required any more.

The validity of expressions additionally passes the result of the expression to
the postcondition:

E.{P}e{Q} = Vsvt. Ps— (In.s —e=v—n—1t) — Qut

For the soundness proof we need variants of these definitions where the recursive
depth is not existentially quantified over but exported as an extra numerical
parameter of the judgments, e.g. =n: (P, ¢, Q) =Vst. Ps — s —c—n—t
— @ t. This gives rise to the equivalences = {P} ¢ {Q} = (Vn. En: (P, ¢,
Q) and = {P} e {Q} = (Yn. Eni (P, e, Q).

The validity of a single (statement) triple canonically carries over to sets of
triples:

En: T = VteT. En: t

Finally, we extend the notion of validity to judgments with sets of statement
triples in both the antecedent and consequent:

AlEC = Vn. |[En: A — |En: C

and analogously to judgments with sets of statement triples in the antecedent
and a single expression triple in the consequent:

AlEet = Vn. |Ent A — Enee t

Note that this handling of antecedents is stronger than the one that might be
expected, viz. (Vn. |En: 4) — (¥ n. ||En: C). For an empty set of assumptions
A, both variants are equivalent and coincide with the standard notion of validity.

8.2 Soundness

Soundness of the Hoare logic means that all triples derivable are valid, i.e. {}
{P} ¢ {Q} = E {P} ¢ {Q}, and analogously for expressions.

We prove soundness by simultaneous induction on the derivation of |- and
[F-c. All cases emerging during the proof are straightforward, except for the Loop
rule where an auxiliary induction on the derivation of the evaluation judgment
is required (in order to handle the loop invariant) and the Impl rule where an
induction on the recursive depth is required (in order to justify the additional
assumptions). The proof takes about 50 steps (user interactions).

For more details of the proof see [22, §10] though matters are simplified here
because of our defensive operational semantics. In particular, the evaluation of
Meth gets stuck if the dynamic type computed from the receiver expression of the
method call does not conform to the expected static type. This relieves us from
expressing, proving and exploiting type safety for NanoJava, a major endeavor
that we had to make for the language(s) given in [21,22]. ?

8.3 (Relative) Completeness

Relative completeness of the Hoare logic means that all valid triples are derivable
from the empty set of assumptions (if we assume that all valid side conditions
can be proved within the meta logic), i.e. = {P} ¢ {Q} = {} + {P} ¢ {Q},
and analogously for expressions.

We prove this property with the Most General Formula (MGF) approach due
to Gorelick [5]. The Most General Triple for a statement ¢,
MGT ¢ Z = {As. Z =35} c{At.In. Z —c—n— 1)
expresses essentially the operational semantics of c: if we bind the initial state
using the auxiliary variable Z then the final state ¢ referred to in the postcon-
dition is exactly the one obtained by executing ¢ from Z. The MGF states that
the MGT is derivable without assumptions for any Z: VZ. {} |- {MGT ¢ Z}.
The MGT and MGF for expressions are defined analogously.

In contrast to earlier applications of the MGF approach, in particular [22,
§11], here the auxiliary variables Z are bound at the meta level and not within
the assertions. This makes the MGFs easier to understand and manipulate.

If we manage to prove the MGF for all terms, relative completeness follows
easily by virtue of the consequence rule and the definitions of validity. This
has to be done basically by structural induction on the terms. The problem of
structural expansion (rather than reduction) during method calls is solved by
assuming first that the MGFs for all method implementations are fulfilled. Thus
the main effort lies in proving the lemma VM Z. A |- {MGT (Impl M) 7} =
VZ. A {MGT cZ})NNNZ. A|le MGT. e Z). Note that the free variables
¢ and e denote any statement or expression, irrespectively if they appear in M
or not.

Using the lemma and applying the structural rules Impl, Conjl, ConjE and
Asm, we can then prove {} | {MGT (Impl M) Z} and from this — and using
the lemma again — the MGF and thus relative completeness is straightforward.
The proof takes about 100 steps. More detail on the proof as well as some some
proof-theoretical remarks may be found in [22, §11].

2 Of course, the theorem prover would assist us in re-using the earlier developments,
but still manual adaptations would be required, and it is of course better to avoid
technically difficult matters entirely if possible.

9 Concluding remarks

We have presented new solutions for technically difficult issues of Hoare logic
and applied them to a Java-like object-oriented kernel language. Although this is
unlikely to be the definitive word on the subject, it is a definite improvement over
previous such Hoare logics, in particular regarding simplicity and succinctness.
This is because we have tuned the logic towards ease of mathematical analysis.
Thus we could show that soundness and completeness proofs need not be hard
— they can even be machine-checked.

This brings us to a hidden theme of this research: analyzing logics with a
theorem prover pays. Although the main benefit usually advertised is correctness
(which is indeed an issue in the literature on Hoare logics), we feel the following
two points are at least as valuable.

Occam’s razor: the difficulty of machine-checked proofs enforces a no-frills
approach and often leads to unexpected simplifications.

Incrementality: once you have formalized a certain body of knowledge, in-
cremental changes are simplified: the prover will tell you which proofs no
longer work, thus freeing you from the tedium of having to go through all
the details once again, as you would have to on paper.

Finally we should comment on how to extend our work from partial to total
correctness. Since NanoJava is deterministic, we conjecture that the rules for
loops, recursion and consequence by Kleymann [11] should carry over easily. In
the presence of unbounded nondeterminism, things become more difficult, but
we have already treated this situation in isolation [16] and are confident that it
should also carry over easily into an object-oriented context.

References

1. M. Abadi and K. R. M. Leino. A logic of object-oriented programs. In Theory
and Practice of Software Development, volume 1214 of Lect. Notes in Comp. Sci.,
pages 682—696. Springer-Verlag, 1997.

2. P. America and F. de Boer. Proving total correctness of recursive procedures.
Information and Computation, 84:129-162, 1990.

3. K. R. Apt. Ten years of Hoare logic: A survey — part I. ACM Trans. on Prog.
Languages and Systems, 3:431-483, 1981.

4. S. A. Cook. Soundness and completeness of an axiom system for program verifi-
cation. SIAM Journal on Computing, 7(1):70-90, 1978.

5. G. A. Gorelick. A complete axiomatic system for proving assertions about recur-
sive and non-recursive programs. Technical Report 75, Department of Computer
Science, University of Toronto, 1975.

6. M. Huisman. Java program verification in Higher-order logic with PVS and Isabelle.
PhD thesis, University of Nijmegen, 2001.

7. M. Huisman and B. Jacobs. Java program verification via a Hoare logic with
abrupt termination. In Fundamental Approaches to Software Engineering, volume
1783 of Lect. Notes in Comp. Sci., pages 284-303. Springer-Verlag, 2000.

10.

11.

12.

13.

14.
15.

16.

17.
18.

19.

20.

21.

22.

23.
24.

A. Igarashi, B. Pierce, and P. Wadler. Featherweight Java: A minimal core calculus
for Java and GJ. In ACM Symposium on Object Oriented Programming: Systems,
Languages, and Applications (OOPSLA), Oct. 1999. Full version in ACM Trans-
actions on Programming Languages and Systems (TOPLAS), 2001.

B. Jacobs and E. Poll. A logic for the Java Modeling Language JML. In H. Huss-
mann, editor, Fundamental Approaches to Software Engineering, volume 2029 of
Lect. Notes in Comp. Sci., pages 284-299. Springer-Verlag, 2001.

T. Kleymann. Hoare logic and VDM: Machine-checked soundness and completeness
proofs. Ph.D. Thesis, ECS-LFCS-98-392, LFCS, 1998.

T. Kleymann. Hoare logic and auxiliary variables. Formal Aspects of Computing,
11:541-566, 1999.

T. Kowaltowski. Axiomatic approach to side effects and general jumps. Acta
Informatica, 7:357-360, 1977.

K. R. M. Leino. Ecstatic: An object-oriented programming language with an
axiomatic semantics. In Fourth International Workshop on Foundations of Object-
Oriented Programming (FOOL 4), 1997.

J. Morris. Comments on “procedures and parameters”. Undated and unpublished.
T. Nipkow. Winskel is (almost) right: Towards a mechanized semantics textbook.
In V. Chandru and V. Vinay, editors, Foundations of Software Technology and
Theoretical Computer Science, volume 1180 of Lect. Notes in Comp. Sci., pages
180-192. Springer-Verlag, 1996.

T. Nipkow. Hoare logics for recursive procedures and unbounded nondeterminism.
Draft, 2001.

T. Nipkow. Hoare logics in Isabelle/HOL. In Proof and System-Reliability, 2002.

T. Nipkow, D. v. Oheimb, and C. Pusch. pJava: Embedding a programming lan-
guage in a theorem prover. In F. Bauer and R. Steinbriiggen, editors, Foundations
of Secure Computation, pages 117-144. 10S Press, 2000. http://isabelle.in.
tum.de/Bali/papers/M0OD99.html.

T. Nipkow and L. Paulson. Isabelle/HOL. The Tutorial, 2001. http://isabelle.
in.tum.de/doc/tutorial.pdf.

D. v. Oheimb. Hoare logic for mutual recursion and local variables. In C. P.
Rangan, V. Raman, and R. Ramanujam, editors, Foundations of Software Tech-
nology and Theoretical Computer Science, volume 1738 of Lect. Notes in Comp.
Sci., pages 168-180. Springer-Verlag, 1999. http://isabelle.in.tum.de/Bali/
papers/FSTTCS99.html.

D. v. Oheimb. Analyzing Java in Isabelle/HOL: Formalization, Type Safety and
Hoare Logic. PhD thesis, Technische Universitdat Miinchen, 2001. http://www4.
in.tum.de/"oheimb/diss/.

D. v. Oheimb. Hoare logic for Java in Isabelle/HOL. Concurrency and Computa-
tion: Practice and Ezperience, 13(13), 2001. http://isabelle.in.tum.de/Bali/
papers/CPEO1.html.

A. Poetzsch-Heffter. Personal communication, Aug. 2001.

A. Poetzsch-Heffter and P. Miiller. A programming logic for sequential Java. In
S. Swierstra, editor, Programming Languages and Systems (ESOP ’99), volume
1576 of Lect. Notes in Comp. Sci., pages 162—-176. Springer-Verlag, 1999.

http://isabelle.in.tum.de/Bali/papers/MOD99.html
http://isabelle.in.tum.de/Bali/papers/MOD99.html
http://isabelle.in.tum.de/doc/tutorial.pdf
http://isabelle.in.tum.de/doc/tutorial.pdf
http://isabelle.in.tum.de/Bali/papers/FSTTCS99.html
http://isabelle.in.tum.de/Bali/papers/FSTTCS99.html
http://www4.in.tum.de/~oheimb/diss/
http://www4.in.tum.de/~oheimb/diss/
http://isabelle.in.tum.de/Bali/papers/CPE01.html
http://isabelle.in.tum.de/Bali/papers/CPE01.html

	Introduction
	Related work

	NanoJava
	Abstract syntax
	Terms
	Declarations

	Operational Semantics
	Program State
	Evaluation rules

	Hoare logic concepts
	Assertions
	Side Effects
	Auxiliary Variables

	Hoare logic rules
	Structural rules
	Standard rules
	Object-oriented rules

	Example
	Equivalence of Operational and Axiomatic Semantics
	Validity
	Soundness
	(Relative) Completeness

	Concluding remarks

