

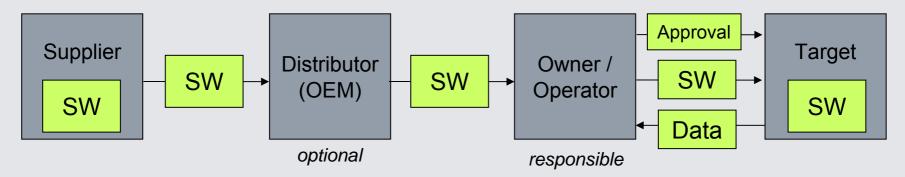
Security Architecture and Formal Analysis of an Airplane Software Distribution System

David von Oheimb¹ Monika Maidl¹ Richard Robinson²

¹ Siemens Corporate Technology, Munich ² Boeing Phantom Works, Seattle

ICAS/AIAA ATIO 2008 Congress Anchorage, USA, 15 Sep 2008

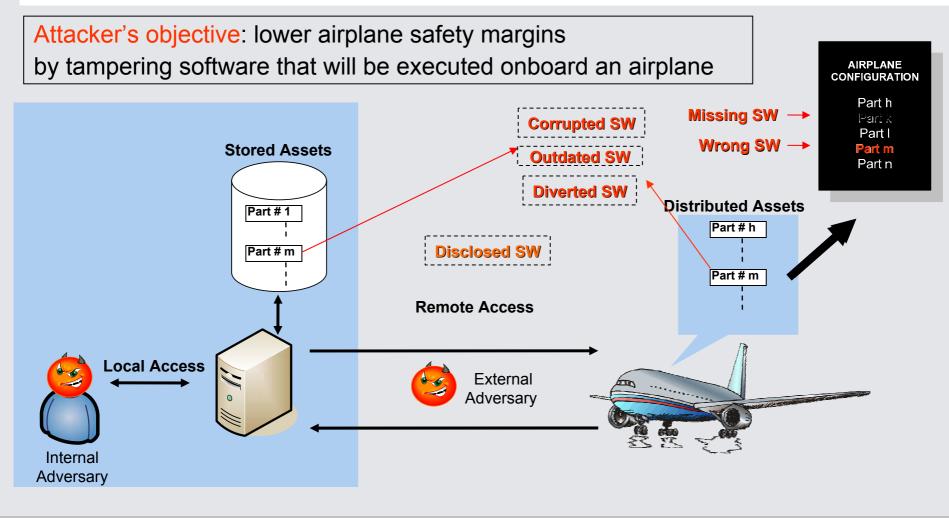
2


- Airplane Asset Distribution System
- Hybrid security assessment and architecture
- Formal crypto protocol model
- Validation with AVISPA Tool
- Conclusion

Airplane Asset Distribution System (AADS)

System providing secure distribution of software (aka. LSAP, parts, assets) and data from software supplier to aircraft in production or in service

→ Airplane Asset Distribution System (AADS)



More general: IT system with networked devices in the field performing safety-critical and/or security-critical tasks. Field devices require secure update of embedded software.

Transition from media-based (CD-ROMs etc.) to **networked transport** increases **security risks** due to transport over open, insecure networks

Security threats

Corruption/Injection Wrong Version

© 2008 The Boeing Company and Siemens AG Dr. David von Oheimb

Diversion

Disclosure

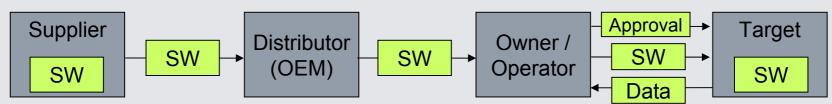
5

- Airplane Asset Distribution System
- Hybrid security assessment and architecture
- Formal crypto protocol model
- Validation with AVISPA Tool
- Conclusion

Common Criteria (CC) for IT security evaluation

product-oriented methodology for **IT security assessment** ISO/IEC standard 15408

Current version: 3.1 of end-2006


Aim: gain confidence in the security of a system

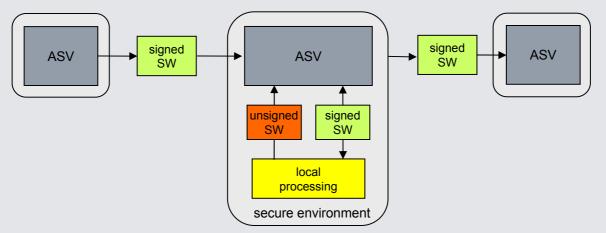
- What are the objectives the system should achieve?
- Are the measures employed appropriate to achieve them?
- Are the measures implemented and deployed correctly?

Hybrid security assessment

AADS usually are complex distributed systems with many components

- Highest CC evaluation assurance levels (EAL 6-7) require formal analysis General problems:
- Complete formal analysis too costly
- CC offer only limited support ("CAP") for modular system evaluation

Pragmantic approach:


- Define confined security kernel with generic component: ASV
- Asset Signer Verifier (ASV) handles digital signatures at each node
- Evaluate ASV according to Common Criteria EAL4 (non-formal)
- Analyze the interaction of ASVs in a formal way (\rightarrow crypto protocol)

Asset Signer Verifier (ASV)

Each node in AADS runs an ASV instance, used for:

- Introducing unsigned software into the AADS, by digitally signing and optionally encrypting it
- Verifying the signature on software received from other ASVs, checking integrity, authenticity and authorization of the sender
- Approving software by adding an authorized signature
- Delivering software out of the AADS after successfully verifying it

© 2008 The Boeing Company and Siemens AG Dr. David von Oheimb

9

- Airplane Asset Distribution System
- Hybrid security assessment
- Formal crypto protocol model
- Validation with AVISPA Tool
- Conclusion

Formal modeling: Alice-Bob notation

A - M -> B	message M sent from A to B
Asset	a software item including its identity
h(M)	the hash value (i.e. crypto checksum) of content \mathbb{M}
M.N	the concatenated contents of ${\tt M}$ and ${\tt N}$
{M}_inv(K)	content ${\tt M}$ digitally signed with private key ${\tt K}$
{M}_K	content M encrypted with public key K

Formal modeling: AADS node structure

SUP: software supplier with private key **inv(KSUP) DIS**: software distributor with private key **inv(KDIS)**

- **OP** : target operator with private key **inv(KOP**)
- **TD** : target device with private key inv(KTD)

Signatures comprise hash value of asset and **identity of intended receiver** Signatures are applied in parallel (rather than nested or discarded)

Formal modeling: approvals and certificates

- Certificate of a node relates its identity with its public key, e.g. certificate of supplier SUP: CertSUP = {SUP.KSUP}_inv(KCA)
- Certificate authority (CA) with private key inv(KCA)
- Certificates are self-signed or signed by CA
- Locally stored sets of public keys of trusted ASVs and CAs
- Approval information partially modelled: operator specifies target

- Airplane Asset Distribution System
- Hybrid security assessment and architecture
- Formal crypto protocol model
- Validation with AVISPA Tool
- Conclusion

Show asset authenticity, integrity and confidentiality:

- assets accepted by target have indeed been sent by the supplier
- assets accepted by target have not been modified during transport
- assets remain secret among the ASV instances
- asset authenticity and integrity also hop-by-hop

Correct destination covered:

Name of the intended receiver in signed part, checked by target.
Signature of the operator acts as installation approval statement.

Correct version partially covered:

Integrity of version info, checks delegated to ASV local environment.

Formal validation: remarks

Modelling:

- Alice-Bob notation not detailed and precise enough
- Use the specification language of the AVISPA Tool: HLPSL
- Asset Signer Verifier (ASV) as parameterized role, multiple instances
- AADS as communication protocol linking different ASV instances
- Multiple protocol sessions describing individual SW transports

Checking:

- At the level of detail of the model, all goals are met
- Modelcheckers at their complexity limits, due to
 - parallel signatures, only the latest one being checked
 - multiple instances of central nodes (e.g. manufacturer)
 - **.**..?

- Airplane Asset Distribution System
- Hybrid security assessment and architecture
- Formal crypto protocol model
- Validation with AVISPA Tool
- Conclusion

Conclusion

- Challenges for AADS development
 - complex, heterogeneous, distributed system
 - security is critical for both flight safety and airline business
- Experience with AADS evaluation
 - Common Criteria most widely accepted methodology available
 - Problem of compositional security evaluation not solved
 - Use formal analysis where cost/benefit ratio is best
 - Highly precise design and documentation: assumptions, requirements
 - Shape system architecture to support security evaluation
- Future steps
 - Trust management aspects including Public Key Infrastructure (PKI)
 - Configuration management with installation instructions and reports