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Abstract. We revisit the classical notion of noninterference for state-
based systems, as presented by Rushby in 1992. We strengthen his re-
sults in several ways, in particular clarifying the impact of transitive vs.
intransitive policies on unwinding. Inspired partially by Mantel’s obser-
vations on unwinding for event systems, we remove the restriction on the
unwinding relation to be an equivalence and obtain new insights in the
connection between unwinding relations and observational preorders.
Moreover, we make two major extensions. Firstly, we introduce the new
notion of nonleakage, which complements noninterference by focusing
not on the observability of actions but the information flow during sys-
tem runs, and then combine it with noninterference, calling the result
noninfluence. Secondly, we generalize all the results to (possibilistic) non-
determinism, introducing the notions of uniform step consistency and
uniform local respect. Finally, we share our experience using nonleakage
to analyze the confidentiality properties of the Infineon SLE66 chip.
Like Rushby’s, our theory has been developed and checked using a the-
orem prover, so there is maximal confidence in its rigor and correctness.

1 Introduction

Noninterference, a very strong, abstract and mathematically elegant way of ex-
pressing secrecy, has been introduced more than two decades ago by Goguen and
Meseguer [GM82,GM84]. Since then, a large body of work ([Sut86,Fol87,McC90],
[Rya90,McL94,ZL97,Man00], etc.) has grown generalizing noninterference to non-
deterministic systems, leading to a variety of definitions that partially coincide
or exhibit subtle differences. A systematic overview is given by Mantel [Man03].

A further dimension of generalization is towards information flow policies
that are not transitive, used for describing downgrading, information filters and
channel control. The notion of intransitive noninterference [HY86,Rus92,Pin95]
has caused some difficulties and debate. Also Roscoe and Goldsmith [RG99]
motivate and explain intransitive noninterference, but on the other hand add new
confusion: they criticize the classical definition via the ipurge function, giving
examples of wrongly implemented downgraders and attributing the problem to
limitations of the expressiveness of purging, yet the actual problem is at least
in part due to the semantical discrepancies (i.e., the implementation errors)
that they assume and not due to intransitivity. Nevertheless, we believe that
intransitive noninterference is a notion both valid and practically useful, thus
we make sure not to limit ourselves to the transitive case.



Many approaches focus on event systems and therefore typically use variants
of process algebras like CSP as the underlying system model. Yet most systems
that appear in practice are heavily state-oriented. Consequently, when it comes
to their security, the flow of information contained in the system state often is
the only thing that really matters or is at least as important as the visibility of
actions or I/O events. Though state-oriented systems can be described in event-
oriented formalisms, we feel that this is not very natural. Our aim is to have a
theory of secure information flow as simple and abstract as possible that models
state-oriented systems directly, hence we use plain state automata as the underly-
ing system model. Furthermore, we require verification techniques like unwinding
theorems implemented in a theorem proving system usable for practical security
analysis. Moreover, we want to cover both deterministic and (non-total) non-
deterministic systems and both transitive and intransitive policies. We are not
aware of a theory that meets all these requirements — for instance, both McCul-
lough’s restrictiveness [McC90] and the contemporary language-based security
[SM03] handle deterministic and nondeterministic state-based systems but not
intransitive policies. So we decided to develop our own theory.

Rushby’s work [Rus92], using simple automata and handling intransitive non-
interference yet not nondeterminism, appeared as a good starting point. We
have implemented a slight variant of his theory, using the state-of-the-art the-
orem prover Isabelle/HOL [NPW02], removing some unnecessary limitations,
extending it as straightforwardly as possible to nondeterministic systems, and
introducing a hierarchy of variants of noninterference that concentrate to vari-
ous extents on information flow between domains. The complete theory sources
including proofs are available online [Ohe04]. There is some closely related work
by Mantel [Man01,Man03] that also handles nondeterminism and unwinding for
intransitive noninterference. It deals with a large number of variants of nonin-
terference in a systematic way, but is event-oriented and not implemented in a
theorem prover. We give more comments on the similarities and differences to
his approach in the course of presenting our development.

2 System model

We use two simple automaton models for describing systems as deterministic
or nondeterministic state machines. Each action a of type action transforms
the state via a total transition function step(a), following Rushby [Rus92], or a
(possibly partial and nonfunctional) transition relation Step(a), respectively. 1

step : action × state → state
Step : action → ℘(state × state)

Runs of a system are described by lifting steps over action sequences.
run : action∗ × state → state
Run : action∗ → ℘(state × state)

1 Whenever there is a direct correspondence between the deterministic and the non-
deterministic case, we use the same names except that the versions for the latter
case are capitalized in part.
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They are defined by straightforward primitive recursion:

def run([], s) ≡ s
def run(a _ α, s) ≡ run(α, step(a, s))
def Run([]) ≡ {(s, s)| True}
def Run(a _ α) ≡ {(s, t)| ∃s′. (s, s′) ∈ Step(a) ∧ (s′, t) ∈ Run(α)}

In the above definitions, ‘[]’ stands for the empty sequence and ‘a _ α’
denotes the action sequence α with the action a prepended to it.

The initial system state, used for defining classical noninterference even in
the nondeterministic case, is denoted by s0.

Each action is associated with a security domain used to describe both re-
strictions on its own visibility and the portion of the state it may read from.

dom : action → domain

There is an output function defined on state yielding some value(s) of type
output. Output is not associated with an action but with the state alone, i.e., we
model systems as Moore automata. In order to express the observations possible
for each security domain, the output function receives an extra parameter of type
domain. In this respect, we deviate slightly from Rushby’s system model which
uses Mealy automata where output depends on the security domain indirectly
via the domain associated with actions.

output : domain × state → output

We use domain instead of action as the extra parameter of output because
this slightly simplifies some formulations and allows both a more direct inter-
pretation of access control and an easier comparison with nonleakage.

3 Generic notions

3.1 Policies

Central to noninterference and its derivatives is the notion of a policy,

· ; · : ℘(domain × domain)

also called interference relation. It expresses that information is allowed to flow
from the first domain to the second. The complementing relation, 6;, is called
noninterference relation. Classical multi-level security polices induce a transitive
interference relation, but others are intransitive: they allow indirect information
flow via privileged channels like a censoring downgrader or an encryption engine
while a direct (short-circuit) flow is prohibited.

As usual, we globally assume reflexivity of policies: ∀u. u ; u. Other as-
sumptions are of local nature. For instance, for part of our results, transitivity
of policies is required (but only where explicitly stated).

3.2 Allowed source domains

In order to express the allowed information flow between domains for (in general)
intransitive policies, we employ the auxiliary function sources [Rus92]. It takes
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a sequence of actions α and a target domain u and yields the set of domains that
are allowed to pass information to u immediately or indirectly via (a subsequence
of) α. The following definition is equivalent to the classical one:

sources : action∗ × domain → ℘(domain)
def sources([], u) ≡ {u}
def sources(a _ α, u) ≡ sources(α, u) ∪

{w| ∃v. dom(a) = w ∧ w ; v ∧ v ∈ sources(α, u)}
For example, a sufficient condition for v ∈ sources(a1 _ a2 _ a3 _ a4 _ [], u)
is v = dom(a2) ∧ dom(a2) ; dom(a4) ∧ dom(a4) ; u (even if v 6; u).

For defining weak nonleakage in §5.3, we will use a second variant called
chain. It can be derived from the above definition by leaving out the restriction
dom(a) = w on the chain elements. This variant yields all domains connected
with the given domain via the relation {(u, u)| True} ∪ ; ∪ ;2 ∪ . . .∪ ;n

where n is the length of the action sequence given as the first argument.
Obviously, sources yields a subset of the result of chain, i.e. sources(α, u) ⊆

chain(α, u). Moreover, in the case of transitive policies, chain yields a subset of
;, in the sense that chain(α, u) ⊆ {w| w ; u}.

3.3 Unwinding relations

Central for both the well-known unwinding results and our extensions is the
unwinding relation on states, parameterized by the observing domain u:

· ·∼ · : domain → ℘(state × state)
Classically, this relation is a view-partitioning equivalence [Rus92,ZM01] ex-

pressing indistinguishability of states from u’s perspective. In most applications,
it is simply a pointwise equation on the contents of those variables that u may
observe. Zdancewic and Myers [ZM01] call this a view of a system S and use it
for defining an observational equivalence, S[≈], on stuttering-equivalent traces.
In order to maintain confidentiality of information contained in the system state,
the unwinding relation is to be preserved locally by every computation step.

Regarding the unwinding relation to be an equivalence is intuitive and valid
for most cases, yet Mantel pointed out that unwinding does not really require
symmetry [Man00], neither reflexivity nor transitivity [Man03], and that in some
applications the relation is e.g. intransitive2. Inspired partially by his results, we
allow for arbitrary unwinding relations as long as they imply the observational
equivalence (or preorder, respectively) induced by the output function. Only for
the unwinding theorems of noninterference, it has to be assumed that for all
observers the initial state is in unwinding relation with itself: ∀u. s0

u∼ s0

The unwinding relation is lifted in the canonical way to sets of domains,
inheriting any reflexivity, symmetry, and transitivity properties.

·
·
≈ · : ℘(domain) → ℘(state × state)

def s
U
≈ t ≡ ∀u ∈ U. s

u∼ t

2 This is not to be confused with intransitivity of the information flow policy.
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4 Noninterference

In this section, we slightly improve the theory of noninterference as presented by
Rushby in [Rus92]. Moreover, we extend the results to nondeterministic systems.
Also in the two subsequent sections introducing nonleakage and noninfluence,
we will handle both the deterministic and the nondeterministic case, displaying
the inherent parallelism between the two cases as far as appropriate.

4.1 Purging

We define the classical purge function filtering out confidential events with re-
spect to (generally) intransitive policies, as introduced in [Rus92]:

ipurge : domain × action∗ → action∗

def ipurge(u, []) ≡ []
def ipurge(u, a _ α) ≡ if dom(a) ∈ sources(a _ α, u)

then a _ ipurge(u, α) else ipurge(u, α)

For example, ipurge(a1 _a2 _a3 _a4 _ [], u) = a2 _a4 _ [] if a1 and a3 may
not directly nor indirectly (i.e., via any of their successors in the given chain of
actions) influence u, but if a4 does so directly (i.e., dom(a4) ; u holds) and a2

indirectly, via dom(a2) ; dom(a4). Generally, ipurge enjoys properties like

lemma sources ipurge : sources(ipurge(u, α), u) = sources(α, u)
lemma ipurge idempotent : ipurge(u, ipurge(u, α)) = ipurge(u, α)

If we replace the condition dom(a) ∈ sources(a _ α, u) by dom(a) ; u,
we obtain the simpler variant typically used for transitive policies, which we
call tpurge. It can be shown that there is a very intuitive characterization of
tpurge, namely: tpurge(u, α) removes from α all actions a with dom(a) 6; u.
Moreover, as already stated by Rushby, tpurge coincides with ipurge in the case
of transitive policies. Therefore, in the following we will use only ipurge because
it covers both the transitive and the general (possibly intransitive) case.

4.2 The deterministic case

General version The essence of noninterference is that an observer cannot tell
the difference between any system run and the variant of it obtained by remov-
ing (“purging”) all events that he is not allowed to notice directly or indirectly.
In order to formulate this notion and its derivatives in a concise way, we first
define an observational equivalence relation on the state with an associated ac-
tion sequence. The equivalence is parameterized by the observing domain and
is induced by the output function applied to the final state after executing the
respective action sequence.

· / · ·
l · / · : domain → ℘(state × action∗ × state × action∗)

def s / α
u
l t / β ≡ output(u, run(α, s)) = output(u, run(β, t))

Using this relation, classical noninterference can be written as

def noninterference ≡ ∀α u. s0 / α
u
l s0 / ipurge(u, α)
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Unwinding reduces this global security property to a set of local, step-wise
properties, in particular the two complementing ones introduced in [Rus92]:

– step consistency : s
u∼ t −→ step(a, s) u∼ step(a, t), preserves the unwinding

relation for each action a. Its meaning is that the effects of executing a
on s and t as far as observable by the domain u, expressed by step(a, s) u∼
step(a, t), may depend on the previous values in the states s and t observable
by u, expressed by s

u∼ t, but on nothing else. This property is used in the
case that the domain of the action to be performed, dom(a), is allowed to
interfere with the observing domain u, i.e. dom(a) ; u.

– local respect : dom(a) 6; u −→ s
u∼ step(a, s) handles the opposite case.

We weaken (thus effectively generalize) Rushby’s definition of step consistency:
def weakly step consistent ≡ 3

∀a u s t. dom(a) ; u ∧ s
dom(a)∼ t ∧ s

u∼ t −→ step(a, s) u∼ step(a, t)
by adding two premises which make step consistency easier to establish in ap-
plications. Firstly, dom(a) ; u states that action a is allowed to interfere with
the observing domain u. This is just an enhancement of convenience because in
the other case, dom(a) 6; u, the property can be obtained from local respect.

Secondly, the premise s
dom(a)∼ t is present not only in the intransitive case,

as it was before. It allows that the effects of a depend also on the observables of
dom(a), the “official” input domain that the action a may read from. In Figure 1,

Fig. 1. data flow if dom(a) ; u

the large ovals give an extensional view of all variables in the system state.
The small ovals describe (possibly overlapping) subsets of them — the standard
interpretation of security domains. The solid arrows depict allowed information
flow into the domain u induced by a, while the dashed arrow depicts forbidden
flow. Since the information flow from dom(a) additionally allowed here is both
very natural and important in applications, the “ordinary” step consistency is
too strong. Adding the extra premise also for the transitive case is sound, as
our main unwinding theorem confirms. Rushby does not state this sharpened
result, although he compares the transitive and the intransitive case in detail.
3 We adopt the convention that ’∧’ binds stronger than ’−→’
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Like Mantel [Man00], we split Rushby’s notion of local respect into a left-
hand and right-hand variant, which allows us to remove the symmetry constraint
on the unwinding relation. Moreover, we transform local respect such that it
preserves rather than introduces the unwinding relation. This not only relieves
us from requiring transitivity of the unwinding relation, but also yields a stronger
observational preorder for the nondeterministic case than Mantel’s (see §5.6).

def local respect left ≡ ∀a u s t. dom(a) 6; u ∧ s
u∼ t −→ step(a, s) u∼ t

def local respect right ≡ ∀a u s t. dom(a) 6; u ∧ s
u∼ t −→ s

u∼ step(a, t)

def local respect ≡ local respect left ∧ local respect right

One can show easily that under the assumption that the unwinding relation
is an equivalence, these definitions coincide with the classical one recalled above.

In the proof of the unwinding theorem for both noninterference and nonleak-
age, a consequence of local respect is used that is structurally very similar to
step consistency, but handles the case dom(a) 6; u. We call it step respect.

def step respect ≡ ∀a u s t. dom(a) 6; u ∧ s
u∼ t −→ step(a, s) u∼ step(a, t)

Obviously, the combination of the left-hand and right-hand variants of local
respect implies step respect: local respect −→ step respect

Assuming ∀u. s0
u∼ s0 and employing output consistency, which is defined as

def output consistent ≡ ∀u s t. s
u∼ t −→ output(u, s) = output(u, t)

we can prove the main unwinding theorem for noninterference:

theorem noninterference :
weakly step consistent ∧ local respect ∧ output consistent −→ noninterference

This theorem is essentially the same as [Rus92, Theorem 7] except that is not
(unnecessarily) restricted to intransitive policies. Appendix A gives an abstract
example of using its extra strength.

Strong version Strictly speaking, the classical notion of noninterference only
states that an observer cannot deduce that the subsequence of all actions that he
is not allowed to see has occurred. This is because purging removes all unsuitable
actions from a given sequence, but not part of them, and neither adds any such
actions. This shortcoming can be repaired by using the canonical strong version
of noninterference (cf. e.g. [McC90,Rya90]) that handles arbitrary insertion and
deletion of secret actions:

def strong noninterference ≡
∀α u β. ipurge(u, α) = ipurge(u, β) −→ s0 / α

u
l s0 / β

Taking β = ipurge(u, α), it is easy to see from the idempotence of purging
that this version implies the original version of noninterference. On the other
hand, one can derive the strong version of noninterference from the standard
right-hand one, exploiting symmetry and transitivity of the observational equiv-
alence. Thus one can conclude that in the deterministic case, the strong version
is not strictly stronger than the classical one.
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The just mentioned proof scheme does not work for the nondeterministic case
because there the observational preorder (see below) is not symmetric. Therefore,
we prefer to prove the corresponding “strong” unwinding theorem directly.

theorem strong noninterference : weakly step consistent ∧
local respect ∧ output consistent −→ strong noninterference

4.3 The nondeterministic case

After having elaborated classical noninterference and unwinding in the case of
automata with total deterministic transitions, we now generalize these results to
partial nondeterministic transitions, trying to parallel the above development as
far as possible. This kind of transitions is the one that typically occurs in the
abstract system models that we develop during our security analysis projects. It
imposes two extra challenges to security: because of partiality, the enabledness
of action sequences now plays a role in observations, and because of nonfunc-
tionality, preservation of the unwinding relation becomes more difficult.

For the reasons just given, we extend the observational equivalence of §4.2
with the preservation of enabledness, obtaining an observational preorder :

· / · ·
l⇁ · / · : domain → ℘(state × action∗ × state × action∗)

def s / α
u
l⇁ t / β ≡ ∀s′. (s, s′) ∈ Run(α) −→

∃t′. (t, t′) ∈ Run(β) ∧ output(u, s′) = output(u, t′)

Using this relation, we define noninterference for nondeterministic systems by
the canonical generalization of strong noninterference (cf. [McC90, III]):

def Noninterference ≡ ∀α u β. ipurge(u, α) = ipurge(u, β) −→ s0 / α
u
l⇁ s0 / β

Simple version The immediate generalization of step consistency, step respect,
and local respect for nondeterministic systems is straightforward. 4 Here we de-
fine only “ordinary” rather than weak step consistency, for reasons given below.
There is some similarity of these definitions with weak bisimulation, as explained
e.g. in [Rya01, §10].

def Step consistent ≡ ∀a u s s′ t. dom(a) ; u ∧
(s, s′) ∈ Step(a) ∧ s

u∼ t −→ (∃t′. (t, t′) ∈ Step(a) ∧ s′
u∼ t′)

def Step respect ≡ ∀a u s s′ t. dom(a) 6; u ∧
(s, s′) ∈ Step(a) ∧ s

u∼ t −→ (∃t′. (t, t′) ∈ Step(a) ∧ s′
u∼ t′)

def Local respect left ≡
∀a u s s′ t. dom(a) 6; u ∧ s

u∼ t ∧ (s, s′) ∈ Step(a) −→ s′
u∼ t

def Local respect right ≡
∀a u s t. dom(a) 6; u ∧ s

u∼ t −→ (∃t′. (t, t′) ∈ Step(a) ∧ s
u∼ t′)

Obviously, Local respect left and Local respect right implies Step respect.
4 Actually, it would be sufficient to state them only for reachable states s and t. We

refrain from doing so in order to avoid extra clutter in the presentation.
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Note that for consistency with the preservation of enabledness, the left-hand
variant assumes the transition between the two states while the right-hand vari-
ant requires it to be shown. If the unwinding relation is reflexive and transitive,
our definitions of local respect essentially coincide with those given in [Man01]:

lrf : ∀a u s s′ t. dom(a) 6; u −→ (s, s′) ∈ Step(a) −→ s′
u∼ s and

lrb : ∀a u s t. dom(a) 6; u −→ ∃t′. (t, t′) ∈ Step(a) ∧ t
u∼ t′

Unwinding can be proved essentially as for the deterministic case.

theorem simple Noninterference : Step consistent ∧ Local respect left ∧
Local respect right ∧ output consistent −→ Noninterference

Uniform version Unfortunately, the classical unwinding results concerning
weak step consistency cannot be directly transferred to the nondeterministic
case. This is due to the two premises of weak step consistency, s

u∼ t and

s
dom(a)∼ t, which require an inductive argument that in each unwinding step

the unwinding relation is preserved simultaneously for more than one domain:

(s, s′) ∈ Step(a) ∧ s
sources(a_α,u)

≈ t −→ (∃t′. (t, t′) ∈ Step(a) ∧ s′
sources(α,u)

≈ t′)
Without uniformity, (weak) step consistency etc. only guarantee that for each
v ∈ sources(α, u) there is a suitable t′, but not necessarily a single t′ for all v.

The problem can be circumvented by requiring that the relation Step(a) is
functional for all actions a, as done in [Man01]. This means that every transition
for a with nondeterministic outcome has to be replaced by a set of transitions
with distinguished actions a′, a′′, . . . , where the choice between these actions
is nondeterministic. We would like to avoid requiring such a transformation
on system descriptions. This is possible, namely by resorting to the stronger
notions of uniform step consistency, uniform step respect, etc. They generalize
their counterparts by replacing the unwinding relation for single domains by the
variant lifted over arbitrary sets of domains.

def uni Step consistent ≡ ∀U a s s′ t. (∃u ∈ U. dom(a) ; u) ∧ s
dom(a)∼ t ∧

(s, s′) ∈ Step(a) ∧ s
U
≈ t −→ (∃t′. (t, t′) ∈ Step(a) ∧ s′

U
≈ t′)

def uni Step respect ≡ ∀U a s s′ t. ¬(∃u ∈ U. dom(a) ; u) ∧ U 6= ∅ ∧
(s, s′) ∈ Step(a) ∧ s

U
≈ t −→ (∃t′. (t, t′) ∈ Step(a) ∧ s′

U
≈ t′)

def uni Local respect right ≡ ∀U a s t. ¬(∃u ∈ U. dom(a) ; u) ∧ U 6= ∅ ∧
s

U
≈ t −→ (∃t′. (t, t′) ∈ Step(a) ∧ s

U
≈ t′)

def uni Local respect ≡ Local respect left ∧ uni Local respect right

uni Local respect implies uni Step respect, as well as uni Local respect right
implies Local respect right. A uniform version of Local respect left is not re-
quired because one can show

lemma uni Local respect leftD : Local respect left −→
(s, s′) ∈ Step(a) ∧ ¬(∃u ∈ U. dom(a) ; u) ∧ s

U
≈ t −→ s′

U
≈ t
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With the help of the uniform variants of step consistency and step respect,
the remaining notions and lemmas carry over from the deterministic variants,
essentially retaining their structure, and we obtain

theorem Noninterference : uni Step consistent ∧
uni Local respect ∧ output consistent −→ Noninterference

In applications of this theorem, in general it will take more effort to prove
the uniform variants of step consistency and local respect. Yet in the important
special case of a two-level hierarchy of domains {H,L}, to which every transitive
policy may be reduced, the only non-trivial case is {L}, which happens to be the
single standard case that has to be considered also for the non-uniform variants.

If in an application the relation Step(a) is functional from the outset or has
been transformed to be functional for every a, i.e. ∀s t t′. (s, t) ∈ Step(a) ∧
(s, t′) ∈ Step(a) −→ t = t′, the original and the uniform variants of step consis-
tency and step respect etc. coincide and therefore it is sufficient to prove only
the simpler original versions.

5 Nonleakage

Classical noninterference is concerned with the visibility of events, or to be more
precise, with the secrets that events introduce in the system state and that are
possibly observed via outputs. While this is the adequate notion for some sorts of
applications, there are many others where the concern is not to hide the fact that
some secret event has (or has not) occurred but to prevent that initially present
secret information leaks out of the domain(s) it is intended to be confined to. The
most important of them apparently is language-based information-flow security
where type systems give sufficient conditions for confidentiality; see [SM03] for
an up-to-date survey. Its semantical core is that variations of high-level data
(input) should not cause a variation of low-level data (output). In our notation,
assuming that s

L∼ t means that the low-level portions of the two states s and
t are equal, this can be written as s

L∼ t −→ step(a, s) L∼ step(a, t) which is
nothing but the common structure of step consistency and step respect.

Language-based security typically handles only the two-level domain hier-
archy {H,L} and in particular does not address intransitive policies. Inspired
by our results on noninterference, we generalize it to arbitrary multi-domain
policies. As already argued in §4.2 and depicted by Figure 1, it then becomes
important to take into account the domain an action or transition (which in the
automata-oriented setting is the analogon to atomic statements in the program-
ming language setting) is allowed to read from. Therefore, the above formula

has to be generalized to (dom(a) ; u −→ s
dom(a)∼ t) ∧ s

u∼ t −→ step(a, s) u∼
step(a, t), which is nothing but the conjunction of weak step consistency and
step respect. The conjunction of the two premises can equivalently be written

as s
sources(a_[],u)

≈ t, and further generalizing this idea from a single step to an
arbitrary sequence of actions, we arrive at the new notion of nonleakage.
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5.1 Notion

A system is said to be nonleaking iff for any pair of states s and t and observing
domain u, the two states resulting from running any action sequence α on s and
t are indistinguishable for u if s and t have been indistinguishable for all domains
that may (directly or indirectly) interfere with u during the run of α:

def nonleakage ≡ ∀α s u t. s
sources(α,u)

≈ t −→ s / α
u
l t / α

Or put in other words, for any sequence α of actions performed by the system,
the outcome of u’s observations is independent of variations in all domains except
for those in sources(α, u), from which (direct or indirect) information flow in
the course of α is allowed. Therefore, the relation in the premise is not simply
the unwinding relation s

u∼ t as for language-based security but the conjunction
of all s

v∼ t where v ∈ sources(α, u).
As motivated above, nonleakage can also be seen as the global criterion on al-
lowed vs. actual information flow between domains that is induced by the local
criteria of weak step consistency and step respect depicted by Figure 1.

Note that in comparison to the theory of noninterference, purging is not
needed, and we do not relate the outcome of runs of different action sequences
on the same initial state s0 but of the same action sequence on two states suit-
ably related at the beginning. Moreover, the unwinding relation is used not only
as part of the proof technique, but also for specifying what a domain is allowed
to observe. Indeed, it is a rather common approach (cf. [RG99]) to define non-
interference in terms of an unwinding relations.

The above notion that initially present secrets do not leak can be simulated
using noninterference: by prepending all system runs with a sequence of secret
actions that produce the secrets in question and considering all subsequent ac-
tions non-secret such that they will not be purged. After the initial sequence,
the two intermediate states reached in the purged and in the non-purged run are
thus handled by noninterference in the same way as by nonleakage. Still we be-
lieve that it is worthwhile to have the simpler, independent notion of nonleakage
that expresses the desired information flow property directly.

5.2 Unwinding

For nonleakage and its descendants introduced below, the unwinding techniques
are analogous to those for noninterference. From the above introduction of non-
leakage, it is easy to see that nonleakage is implied by weak step consistency,
step respect, and output consistency, whereas local respect is not required:

theorem nonleakage :
weakly step consistent ∧ step respect ∧ output consistent −→ nonleakage

Apart from the fact that nonleakage can handle an arbitrary number of
domains and arbitrary interference relations between them, the other major
difference to language-based security is that, due to the more general automata-
theory setting, we cannot give a type system that allows for static checks of
confidentiality (provided the type system is sound). Instead, unwinding gives
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local semantic conditions for confidentiality, which are harder to verify but on
the other hand are (presumably) complete.

5.3 Weak nonleakage

The assignment of domains to actions and the resulting relation
sources(α,u)

≈ gives a
very fine-grained control over the information flow caused by action sequences α.
Often this is not actually needed (or possible), namely if actions are not distin-
guished or else domains are not assigned to them, such that individual input
domains of transitions cannot be specified. Replacing sources(α, u) with super-
sets not referring to particular actions, we obtain weaker variants of nonleakage.

Using chain(α, u), the set of all domains that may interfere with u via a chain
of domains whose length is at most the length of α, we obtain weak nonleakage:

def weak nonleakage ≡ ∀α s u t. s
chain(α,u)

≈ t −→ s / α
u
l t / α

For any action sequence α, any domain u may be influenced only by domains
linked to u via ;, up to a chain length given by α. One can understand this
notion as an inductive, multi-domain generalization of language-based security,
interpreting atomic statements as unclassified actions and attributing program
variables a domain structure with a possibly intransitive interference relation.

As sources(α, u) is a subset of chain(α, u), nonleakage implies weak nonleakage.
Due to the use of chain, in unwinding proofs it suffices to use very weak versions
of step consistency and step respect that allow one to assume that the unwinding
relation holds for all domains that may influence the current domain u. More-
over, since the domains of actions do not longer play a role, step consistency and
step respect collapse into a single notion:
def weak step consistent respect ≡

∀s u t. s
{w| w;u}

≈ t −→ ∀a. step(a, s) u∼ step(a, t)

This notion can also be seen as the direct generalization of language-based secu-
rity to transitive multi-domain policies. Here we use it for unwinding, as follows:
theorem weak nonleakage :
weak step consistent respect ∧ output consistent −→ weak nonleakage

5.4 Transitive weak nonleakage

If actions do not have domains associated with them and additionally the length
of a ; -chain is not of interest, for instance if the interference relation is tran-
sitive, we can further replace chain(α, u) with the even simpler {w| w ; u}:

def trans weak nonleakage ≡ ∀s u t. s
{w| w;u}

≈ t −→ ∀α. s / α
u
l t / α

Transitive weak nonleakage expresses that if two states are initially indistin-
guishable for all domains that may influence u, then u cannot tell them apart
after any sequence of actions. We share our experience using it (for the nonde-
terministic case) in §7. Actually, the application described there had motivated
our research on noninterference and its variants presented in this article.

12



For transitive policies, weak nonleakage implies trans weak nonleakage,
hence we obtain

theorem trans weak nonleakage :
weak step consistent respect ∧ output consistent −→ trans weak nonleakage

Note the strong similarities between the global property of transitive weak non-
leakage and the associated local criterion weak step consistent respect.

5.5 The nondeterministic case

All results on nonleakage generalize to the nondeterministic case in analogy with
noninterference. We give the formal details without further ado in Appendix B.

5.6 Observation and unwinding relations

The notion of nonleakage and its connection with the proof of unwinding prop-
erties gives rise to some new insights on observational equivalence (or preorders)
and their connection with unwinding relations.

The observational equivalence s / α
u
l t / α can be seen as equal outcome of

tests on s and t: an attacker belonging to domain u tries to distinguish the two
states on their secret contents by attending and/or executing actions α. This is
closely related to the passive and active attacks defined by Zdancewic and Myers
[ZM01].

Recall that in the deterministic case, the observed outcome of tests is solely
output(u, run(α, s)) and output(u, run(α, t)), respectively. In the nondetermin-
istic case, where we use the observational preorder s / α

u
l⇁ t / α, the outcome

is additionally the enabledness of the event sequence α. If output respects the
unwinding relation u∼, our observational equivalence seems to be equivalent to
S[≈] defined in [ZM01]. Since any output may be encoded by the enabledness of
certain “probing” actions, our observational preorder is in fact also very similar
to the one implicitly used by Mantel [Man03, Remark 5.2.2], namely, preserva-
tion of enabledness for every sequence α of visible events. The only difference is
that this preorder is weaker because it restricts α to non-secret events (from u’s
perspective), i.e. there is no chance for “higher-level” events accidentally helping
u to distinguish the two states. One can — and we do — allow for an arbitrary
mixture of secret and non-secret events because the unwinding relation is pre-
served not only by (weak) step consistency dealing with the visible actions, but
also by step respect dealing with the invisible ones.

Mantel states that preservation of enabledness (for sequences of visible events)
is implied by the unwinding relation, which in the above sense is analogous to
output consistency requiring that equality of outputs is implied by unwinding.

As already mentioned, neither Mantel’s nor our theory requires that the
unwinding relation is reflexive, symmetric, or transitive, while the observational
equivalence (or preorder) is weaker and necessarily reflexive and transitive. One
could regard the latter as the reflexive and transitive closure of the former, and
for many applications, both relations even coincide.
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6 Noninfluence

As Mantel and Sabelfeld [MS01] point out, it is important to combine language-
based security (of information flow in local computations) and the secrecy of
(inter-process communication) events. They achieve this by translating a multi-
threaded while-language with variables labeled either high or low to state-event
systems with deterministic transitions and prove the two corresponding notions
of security equivalent. We can also deal with both worlds (even for intransitive
policies and unrestrictedly nondeterministic systems) by combining noninterfer-
ence and nonleakage, obtaining a new security notion that we call noninfluence:

def noninfluence ≡ ∀α s u t. s
sources(α,u)

≈ t −→ s / α
u
l t / ipurge(α, u)

Note that here no translation between system descriptions is needed.
Noninfluence is the adequate security notion for state-oriented systems if both
– the occurrence of certain events, which may introduce new secrets, should

not be observed, as with classical noninterference, and
– initially present secret data should not be leaked. Allowing for any two in-

distinguishable initial states s and t rather than the same (and fixed) initial
states s0 gives the extra strength of noninfluence over noninterference.

One could also define a variant of noninfluence resembling the stronger for-
mulation of noninterference allowing arbitrary insertion and deletion of actions.

It is interesting to observe that the proof of the main unwinding theorem
for noninterference (cf. §4.2) uses a lemma which already states essentially the
above formula (apart from applying the output function on the result of run),

namely s
sources(α,u)

≈ t −→ run(α, s) = run(ipurge(u, α), t) . Rushby uses it too
[Rus92, Lemma 5], yet he does not attribute to it an independent value. Its extra
strength is needed to get through the main induction in the proof, though later
it is specialized to s = t = s0 to deduce noninterference. Thus, noninfluence
implies noninterference if ∀u. s0

u∼ s0 holds.
In the light of the new notion of noninfluence, both noninterference and

nonleakage are just special cases where either leakage of initial secrets or the
visibility of secret events does not play a role. Nevertheless, it makes sense to
keep both of them because they are simpler than noninfluence, and nonleakage
does not require local respect.

From the observation in the last paragraph it will be clear that the unwind-
ing theorem for noninfluence requires only those preconditions already used for
for noninterference, even though the conclusion is stronger — it simply makes
the strength already contained in [Rus92, Lemma 5] available as a security prop-
erty in its own right. Recall that technically it is even slightly stronger because
unwinding may be an arbitrary (even nonreflexive) relation rather than an equiv-
alence.

theorem noninfluence :
weakly step consistent ∧ local respect ∧ output consistent −→ noninfluence

The generalization to the nondeterministic case is given in Appendix B.
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7 Security of the Infineon SLE66

As a concrete example of applying the purely state-based notion of nonleakage,
we sketch an extended security analysis of the Infineon SLE66 smart card proces-
sor. The main security objective for this device is that part of the chip-internal
security mechanisms and secret data like the master encryption key is not leaked
to any non-authorized observer or manipulator, called “spy”.

In the course of the evaluation of the chip according to ITSEC and Com-
mon Criteria, an abstract formal security model, the so-called “LKW model”
[LKW00] has been developed and later machine-checked [OL02] using the ISM
approach and toolset [ON02]. This model takes a rather naive view of informa-
tion leakage: a secret value is revealed to the spy if and only if its representation
appears on the external interface of the chip. This interpretation does not ac-
count for partial or indirect leakage of information that may be used to deduce
at least certain properties of the secret values.

We have improved the security analysis using transitive weak nonleakage
(for nondeterministic systems). This is the adequate notion for the SLE66 be-
cause the observability of actions does not play a role, but the information
flow between domains. Only two security domains, Sec and NSec, are distin-
guished, so the interference relation is trivially transitive and we have to show
weak uni Step consistent respect only for U = {NSec}, as explained at the
end of §4.3. Since encryption is not explicit in the model, we do not have to deal
with bogus “interference” of secrets with encrypted outputs, though this would
be possible by stating an intransitive information flow via the encryption unit.

For the unwinding relation we choose an equivalence that states equality for
all parts of the chip state that is allowed to be observed from outside, namely
the phases of the chip life-cycle, the availability of chip functionality (see below),
and all non-secret data values. Once the right relation has been chosen, the proof
is rather schematic and in this case not very difficult. The only complication is
that the property holds only for reachable states for which suitable invariants
hold, but we can re-use the invariants that we had already shown during the
previous analysis.

Conducting the proof, we obtained the following results.

– It is crucial that chip functions do not internally leak secret data or give them
away via the chip interface. Since chip functionality is heavily underspecified,
this auxiliary property cannot be proved but has to be provided as an axiom.

– The possibility that at most one (encrypted) secret data value or the encryp-
tion key itself gets leaked is explicitly allowed by the chip designers because
there is no practical means to prevent this. This leakage is actually found
during the proof. Yet it does not do harm because immediately thereafter
the chip gets completely locked such that no more values can be obtained
and thus not both some encrypted data and the key are known to the spy.

– The chip cannot avoid leaking the availability even of those functions that
are considered to be secret (whereas their actual code is not leaked).

– Apart from the exceptions just given, no secret information, not even any
partial information about secret data, can be leaked.
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8 Conclusion

We have refined Rushby’s work on noninterference by rectifying its minor short-
comings concerning transitive vs. intransitive policies and the requirements on
the unwinding relation. This opens a wider range of applications and enables
stronger results like in Appendix A. We have significantly extended Rushby’s
theory to handle nondeterministic systems, introducing uniform step consistency.

We have introduced notions of information flow security that have not been
considered before but naturally arise from re-interpreting Rushby’s unwinding
lemmas, and gained new insights in the nature of unwinding and observability.
Nonleakage has a high application potential because it generalizes language-
based security to arbitrary policies and state-transforming systems. Noninfluence
combines this with classical event-oriented noninterference.

It should be worthwhile conducting further theoretical investigations, e.g.
on completeness of the unwinding conditions and the comparison with related
notions like (robust) declassification and bisimulation.

Our theory has been implemented in the interactive theorem proving system
Isabelle/HOL. As witnessed by the example of the SLE66, it is ready to be
applied in the formal security analysis of state-oriented systems.
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A Access control interpretation

As a (rather abstract) application of our strengthened noninterference theory,
we give an improvement of Rushby’s access control interpretation [Rus92, §2.1].

Employing our unwinding theorem which works for both transitive and in-
transitive interference relations, we only have to show weak step consistency.
Doing so, we have stronger preconditions and thus can dispense with the mono-
tonicity condition u ; v −→ observe(u) ⊆ observe(v), which, according to
Rushby, had forced the transitive completion of the policy. In effect, we gener-
alize his access control interpretation to the general (possibly intransitive) case.
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In order to express access control, the system model is extended by adding
structure to the state, which now becomes a function that maps names to values:

contents : state × name → value

Policies are refined accordingly, associating each domain with a set of names
of objects that it is allowed to read and write, respectively:

observe : domain → ℘(name)
alter : domain → ℘(name)

Following Rushby, for the application of the unwinding theorem, we use the
canonical unwinding relation induced by contents and observe,

def s
u∼ t ≡ ∀n ∈ observe(u). contents(s, n) = contents(t, n)

which happens to be an equivalence, though we do not take advantage of this.
Rushby introduces three reference monitor assumptions. The first of them is

the already introduced output consistency:

def RMA1 ≡ output consistent

As a matter of fact, if the output function yields all values observable for the
given domain, i.e. output(u, s) ≡ {(n, contents(s, n)) | n ∈ observe u}, output
consistency is fulfilled immediately.

Rushby’s second reference monitor assumption states that if an action a
changes the value at some location n, the new value depends only on dom(a).
Due to our observation that weak step consistency is sufficient in any case, we
can use a weaker variant of it, offering the extra premises dom(a) ; u, s

u∼ t,
and n ∈ observe u which allow information flow into n from any domain u
that is allowed to observe n and that may be influenced by the input domain
of a. In other words, if action a changes the contents of variable n observable by
domain u and if dom(a) may influence u, the new value depends only on values
observable by dom(a) and u:

def RMA2 ≡ ∀a u s t n. s
dom(a)∼ t ∧ dom(a) ; u ∧ s

u∼ t ∧ n ∈ observe u ∧
(contents(step(a, s), n) 6= contents(s, n) ∨
contents(step(a, t), n) 6= contents(t, n)) −→

contents(step(a, s), n) = contents(step(a, t), n)

Interestingly, weak step consistency can now be derived from the second
reference monitor assumption alone: RMA2 −→ weakly step consistent

The third assumption, stating that any changes must be granted by alter,
def RMA3 ≡ ∀a s n. contents(step(a, s), n) 6= contents(s, n) −→ n ∈ alter(dom(a))
in conjunction with the remaining condition of Rushby’s Theorem 2,

def AC policy consistent ≡ ∀u v. alter(u) ∩ observe(v) 6= ∅ −→ u ; v

implies local respect: RMA3 ∧ AC policy consistent −→ local respect

Hence, we can prove enforcement of access control

theorem access control secure :
RMA1 ∧ RMA2 ∧ RMA3 ∧ AC policy consistent −→ noninterference
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under weaker assumptions than Rushby does: we do not require that

– observe and alter induce a transitive information flow policy,
– granted information flow induces a hierarchy of observable locations, nor
– information flow into a location n from any domain that is allowed to ob-

serve n and that may be influenced by the input domain of the current action
does not occur.

B Nondeterministic nonleakage and noninfluence

Nonleakage

def Nonleakage ≡ ∀α s u t. s
sources(α,u)

≈ t −→ s / α
u
l⇁ t / α

theorem Nonleakage :
uni Step consistent ∧ uni Step respect ∧ output consistent −→ Nonleakage

Weak nonleakage

def weak Nonleakage ≡ ∀α s u t. s
chain(α,u)

≈ t −→ s / α
u
l⇁ t / α

As above, Nonleakage −→ weak Nonleakage.

def weak uni Step consistent respect ≡ ∀U a s s′ t. U 6= ∅ ∧
(s, s′) ∈ Step(a) ∧ (∀u ∈ U. s

{w| w;u}
≈ t) −→ (∃t′. (t, t′) ∈ Step(a) ∧ s′

U
≈ t′)

theorem weak Nonleakage :
weak uni Step consistent respect ∧ output consistent −→ weak Nonleakage

Transitive weak nonleakage

def trans weak Nonleakage ≡ ∀s u t. s
{w| w;u}

≈ t −→ ∀α. s / α
u
l⇁ t / α

For transitive policies, weak Nonleakage −→ trans weak Nonleakage, hence

theorem trans weak Nonleakage :
weak uni Step consistent respect ∧ output consistent −→
trans weak Nonleakage

Noninfluence

Paralleling the deterministic case as far as possible, we define

def Noninfluence ≡
∀α β s u t. s

sources(α,u)
≈ t ∧ ipurge(u, α) = ipurge(u, β) −→ s / α

u
l⇁ t / β

and can prove
theorem Noninfluence :
uni Step consistent ∧ uni Local respect ∧ output consistent −→ Noninfluence
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