
A Case Study in Decentralized, Dynamic, Policy-Based,
Authorization and Trust Management – Automated

Software Distribution for Airplanes

Peter Hartmann1 , Monika Maidl2, David von Oheimb2,
 Richard Robinson3,

1Landshut University of Appl. Sciences, Am Lurzenhof 1, 84036 Landshut, Germany

peter.hartmann@fh-landshut.de
2Siemens Corporate Technology, Otto-Hahn Ring 6, 80200 München, Germany

{monika.maidl, david.von.oheimb}@siemens.com
3Boeing Research & Technology, P.O.Box 3707, MC 7L-70, Seattle, WA 98127-2207, USA

richard.v.robinson@boeing.com

Abstract. We apply SecPAL, a logic-based policy language for decentralized
authorization and trust management, to our case study of automated software
distribution for airplanes. In contrast to established policy frameworks for
authorization like XACML, SecPAL offers constructs to express trust
relationships and delegation explicitly and to form chains of trusts. We use
these constructs in our case study to specify and reason about dynamic, ad-hoc
trust relationships between airlines and contractors of suppliers of software that
has to be loaded into airplanes.

Keywords: Authorization, trust management, security-tokens, logic, software-
distribution

1 Why do we need dynamic, decentralized authorization and trust
management?

Electronically collaboration increasingly takes place not only within security
domains, but between enterprises and individuals with no pre-established trust
relationships. The application areas comprise industrial applications, energy
management and distribution, transportation systems, healthcare, and many others.
The use case we focus on is the distribution of software ‘parts' to airplanes. The
challenge is not only to transport such software parts from the airline to the airplane,
but that a range of other parties – suppliers, the airplane manufacturer, and service
providers – are involved. There is a strong security requirement that only unmodified
parts that have been released by trusted producers are loaded into the airplane.

Triggered by the increasing demand for electronic communication and
collaboration over the Internet, there is also a strong trend towards using standard
protocols and frameworks as a uniform interface to existing computer systems and
programming frameworks, based on standardized XML messages that are exchanged

mailto:monika.maidl,%20david.von.oheimb%7d@siemens.com

between various parties. In particular, grid computing and web services, based on
XML/SOAP are used in scientific computing, automated business to business and
business to customer scenarios (services) or cloud scenarios like Software-as-a
Service. The use of web services has been standardized by the WS-* family of
standards [1].

Many of these use cases have strong security requirements, and the classic security
mechanisms based on enterprise perimeters protection (firewalls, DMZ etc.) are not
suitable for dynamic, perimeter-crossing collaborations. In particular, mechanisms for
the authentication of externals are required, as incorporating externals into the internal
user management is considered to be inflexible and costly: accounts and access rights
have to be managed, in case of changes in positions at a business partner, and
accounts have to be removed when employees leave a company.

So new security models on top of http and web services communication have been
developed, in particular SAML, SOAP message security (WS-* security standards),
XACML and CardSpace [1,2]. The core of these approaches is the use of security
tokens. Security tokens, e.g. SAML tokens or InfoCards, are short-lived, signed
expressions that are used to transfer authentication status and attributes across domain
boundaries. This means that the authentication decision is delegated to an external
party, namely the one issuing the security token. We will discuss in Section 1.2 how
security tokens form the basis of dynamic, decentralized authentication.

1.1 Authorization

Just as with authentication, established domain-centric security mechanisms do not fit
the requirements of cross-domain collaboration. Authorization has to be decided by
the local authority, i.e. the owner of the application or resource. Typically, this is done
by ACL (access control lists) on operating system level, or by application-specific
authorization models like RBAC (e.g. in SAP). When externals are involved, both
approaches do not work, as externals are typically not covered by the provisioning
processes of an enterprise.

In contrast to authorization within an enterprise, authorization decisions for
externals critically depend on trust. There are many aspects of trust decisions: whether
to trust the authentication mechanism, to what extent the individual or their
organization is trusted, the criticality of the application or action that is requested, and
so on. In addition, in many scenarios including our case study, chains of trusts are
formed. Today, authorization and trust often is handled implicitly. An example is that
users implicitly trust all the root certificates contained in the certificate store of their
operating system or browser. Typically, such a certificate store contains up to several
hundreds of certificates, and decisions which of these are still trusted are difficult and
unreliable. [3] discusses this problem and describes possible attacks.

Hence in order to handle authorization in cross-domain collaboration scenarios, a
flexible language is required to explicitly address authorization in the context of trust
relationships. In the next section we explain the difference between long-term trust
and dynamic, ad-hoc trust relationships in order to make clear what features such a
language should have.

1.2 Dynamic Ad-hoc Trust Relationships

It is important to distinguish between stable trust relationships, which are often
bilateral, and those relationships that are set up in a dynamic, ad-hoc way. Typically,
users have a stable trust relationship within their domain. Typical features of long-
term stable relationships are:
- Authentication by long-term credentials (password, PKI certificate, …).
- User accounts are managed (change of password, roles, etc.).
- User accounts are removed only when the user leaves the domain.
PKI (Public Key Infrastructure) certificates are also security tokens in the sense
discussed above, in that they provide transferable proof of identity. However, PKI
certificates are only issued within a stable trust relationship, as PKI certificates
typically have a validity time of up to several years, and accordingly are issued under
strict procedures and rules only. Inter-domain use of PKI certificates is also long-
term, by formally setting up cross certification or bridge CAs, or implicitly by
inserting root CA certificates in certificate stores of operating systems or browsers.

In contrast, the trust relationship between e.g. a user and a service provider, or two
businesses which want to collaborate is often dynamic and ad-hoc. As already
mentioned, short-lived security tokens can be used in such settings to transfer
authentication status and other attributes between business partners or services
without having stable trust relationships in place beforehand.

The issuer of a security token could be the organization of the individual whose
identity or other attributes are stated, or a third party that is trusted by both the
individual’s organization and the recipient. For example, an owner of an airplane that
needs software updates might not directly trust the supplier of the airplane
manufacturer, but trusts the manufacturer. So the manufacturer can issue a signed
security token to the supplier, stating the supplier’s identity, and the supplier sends
this security token to the airplane owner. That establishes a dynamic trust relationship
between the supplier and the airline.

Dynamic trust might be established in chains, i.e. dynamic trust relationships might
again be used to set up other dynamic relationships. As an example, a supplier might
have contractors to develop software, and issue security tokens for the contractor.
Using this token, the dynamic trust relationship between the supplier and the airline
can be used to set up a dynamic trust relationship between the contractor and the
airline.

The recipient of a short-term security token relies on the information conveyed in
the token to verify the PKI signature of the token and trusts the signer to make these
statements, so long-term PKI trust has to be established. The issuer can only issue
tokens to an individual or an organization that it can authenticate reliably. So
ultimately, dynamic trust relationships ultimately have to be built on stable trust
relationships.

Security tokens can carry more information than just authentication information.
Any sort of statement could be made, e.g. that a company is an official supplier of
another company, or that an employee has certain responsibilities. Using such
attributes plays an important part in trust decisions because such statements can be
used as input to authorization decisions that take into account not only the identity of

the subjects of the security token, but also asserted properties of them. In our case
study, we use security tokens that state that a certain software part has been approved,
or that a service provider is certified to handle airplanes of a certain type.

To summarize, we list typical features of dynamic, ad-hoc trust relationships:
- Authentication by short-term security tokens, i.e. delegation of authentication to

trusted parties.
- Chains of trust.
- Attribute-based authentication.
Hence short-term security tokens are the basic building blocks of dynamic, ad-hoc
trust relationships. For the establishment and management of dynamic relationships, a
framework is required to explicitly reason about attributes, delegation and chains of
trust. We will explain in Section 3.2 how SecPAL matches these requirements.

2 Case Study in Automated Software Distribution to Airplanes

In the past, distribution of embedded software packages to mobile platforms such as
airplanes was accomplished manually. In a typical scenario, the owner or maintenance
provider for a vehicle would receive software updates on physical media, delivered
via courier. A mechanic would be given a work order that entails installing software
updates directly from physical media onto the airplane systems by means of a CD
drive or similar. In the near future, however, software updates will increasingly be
delivered over networks in an automated way.

On the way from the software supplier to the target device, software items may be
handled at intermediate entities: an airplane manufacturer, in our use case Boeing,
typically receive software items from suppliers or their contractors, and send it to
airlines, which bear responsibility for the safe operation of their airplanes, and have
the authorization to send software there. An airline might commission local service
providers at airports to install software on its airplanes. So the software distribution
process consists of several hops, and the software distribution stretches over the IT
systems related to the process at each of these entities.

The airline is the central element of the distribution system and has relations to
suppliers and Boeing on the one hand and to service providers and airplanes on the
other hand. The central role of the airline is justified by the fact that the airline is
responsible for all software due to be installed on an airplane and has to approve these
software parts.

Fig. 1 Software distribution chain

In order to guarantee integrity and authenticity, software parts are signed, possibly in
a nested way – e.g. a software package might be signed by a contractor, by a supplier
and by the manufacturer. More details on the case study can be found in [4].

We assume that suppliers, the manufacturer, the airlines and the service providers
have PKI certificates from some certificate authority, but we do not assume that each
entity trusts all respective CA root certificates. In other words, we do not assume that
stable trust relationships exist between all parties. This means for instance that the
airline or the airplane cannot verify all signatures directly. Instead, we propose the use
of ad-hoc dynamic trust relationships, managed by using SecPAL. First we discuss
the stable relationships that we assume to exist in the case study.

2.1 Trust Relationships between Suppliers, Manufacturers and Airlines

We assume that there are contractual agreements and a technical set up so that
suppliers are able to verify signatures of subcontractors, but neither Boeing nor the
airline can. Similarly, Boeing has stable trust relations with suppliers, possibly by
using a bridge CA like CertiPath Aerospace Bridge CA [5], but the airlines do not
deal with suppliers or contractors directly. Instead, airlines trust Boeing to assert the
identity and role of suppliers. We also assume that airlines own a trusted root
certificate of Boeing’s CA or use the CertiPath Trust Bridge CA, so that the airline
can validate Boeing signatures and assertions.

2.2. Trust Relationships between Airline, Service Providers and Airplanes

We assume that airlines run a proprietary CA or buy commercial certificates, and that
they have processes in place to equip airplanes with a trusted copy of the airline
certificate, so that there is a direct stable trust relationship between the airline and its
airplanes. The airplanes are maintained by local service providers who are contracted
by the airline. An airline may have several service providers, responsible for
maintenance of different airplane types or on different airports. The service providers
use maintenance laptops to connect to the airplane or to the ground network, and will
have to authenticate themselves to the airplane. As service providers contracts might
be short-term, we do not assume stable trust between the airline and service providers.
Instead, service providers obtain short-term security tokens from the airline that
specify e.g. for which airplane types and during which time period a service provider
is authorized to install software.

3 Policy-based Authorization and Trust Management

We use a logic-based language, SecPAL, to model our use case. There are other
policy languages that defined in terms of syntactic language constructs, while their
semantics, i.e. the evaluation algorithm, is described in an informal way. Examples
are XACML and XrML. Such description can be difficult to understand and
implement, and in particular for complicated languages that include delegation, like

XrML, subsequent analysis showed problems [14], which is not surprising because
designers are likely to build something as complex as a logic framework from scratch.
Unclear semantics also makes a language difficult to understand for users.

3.1 SecPAL - Logic-based, Decentralized Authorization

Logic programming is well-suited for expressing trust management, because logic
provides a framework for defining attributes, and enables reasoning, in particular
about chains of trust. After defining a set of statements or facts, an authorization
request can be formulated and logic rules can be used to check whether the
authorization request is a valid consequence of these facts.

SecPAL [6,7] is a logic-based policy language that addresses authorization and
trust in distributed scenarios that involve frequent ad-hoc collaborations between
entities with no pre-established trust relationships.

For example, an airline might decide to accept parts from suppliers and their
contractors, where approval from contractors is sufficient for less critical parts, but
critical parts require approval by suppliers. This can be expressed in SecPAL as
follows:

Airline says p is accepted if
 p is type2-critical AND p is approved.

Airline says p is accepted if
 p is type1-critical AND p is supplier-approved.

Note that ‘is accepted’ , ‘is type1-critical’ and ‘is approved’ are
examples of attributes. In SecPAL, a wide range of attributes or authorization
primitives (“can read”, “is entitled to discount”, “has access from [time1] to [time2]")
can be defined by the author of the policy.
In our example, the airline does not want to manage the information which parts are
type1-critical, and which companies are direct suppliers or contractors. Instead, the
airline delegates statements about suppliers and parts to the manufacturer Boeing like
the following:

 Airline says Boeing can say_0 x is type1-critical.
 Airline says Boeing can say_0 x is a supplier.

Delegation is expressed in SecPAL by the ‘can say’ construct.
These requirements are matched by assertions from other parties, for example:
 Boeing says Part123 is type1-critical.
The suffix _0 for ‘can say’ means that the statement ‘Boeing says Part123
is type1-critical’ is only accepted if it is directly asserted by Boeing, and not
derived by a chain of trust, as explained below.
The concept of parts being supplier-approved is defined by delegation:
 Airline says x can say p is supplier-approved

if x is a supplier.
If the following statements exist:
 Boeing says Honeywell is a supplier.
 Honeywell says Part123 is supplier-approved.
then the request “Part123 is accepted” can be derived.

Chains of trust are used to derive that a company is a contractor. The following
statements are required to derive that ‘FlightMedia is a contractor’:
 Airline says x can say y is a contractor till t
 if x is a supplier AND currentTime < t.

 Airline says x can say that y is a contactor till t1
 if x is a contractor till t2 AND t1 < t2.
Boeing says Honeywell is a supplier.
Honeywell says EquipTech is a contractor till 2010.
EquipTech says FlightMedia is a contractor till 2009.

As this example shows, the requirements of dynamic trust relationships we identified
in Section 1.2, namely the use of attributes, delegation to trusted parties and chains of
trust can be expressed in SecPAL.

3.1.1 SecPAL assertions
Formally, a SecPAL policy consists of several SecPAL assertions, which have the
following form:

A says fact if fact1 AND … AND factn AND constraint.
where fact is a sentence that states properties of principals. All names of principals in
an assertion, like A in the example, stand for public (signature verification) keys. The
principal A is the issuer of the assertion, and signs the assertion.

There are three different types of facts. The first type of fact is based on
authorization primitives like

e has access from t1 to t2.
where e is either a name (like A) or a variable, and where authorization primitives can
be defined by the user. The second type of fact expresses delegation in the form

e can say fact (e.g. B can say c has access from date1
to date2).
Finally, facts can express principal aliasing in the form

e can act as d.
Note that delegation (‘can say’) may be nested, as the fact that is delegated can
itself be a delegation expression.
Assertions are implicitly signed by the issuer, i.e. an assertion ‘A says …’ is meant
to be signed by A.

Assertion tokens and authorization rules
Informally, we can distinguish between SecPAL assertions that are used to prove
identities, attributes or capabilities to another party, which we call assertion tokens,
and assertions that express authorization rules. A service provider specifies
authorization rules to state explicitly under which circumstances a user will be
granted rights, and states precisely what sort of rights can be obtained. The
authorization rules and the delegation rules issued by a service or communication
partner together form its local policy rules.

In contrast, the assertion tokens are provided by the users who want to access a
service in order to prove claims about themselves. Assertion tokens are typically
issued by the home domain of a user, or by a trusted third party that can identify the

user in a reliable way as part of a stable trust relationship. The policy engine of the
service provider will use the user’s assertion tokens together with the local policy
rules to decide whether the access can be granted.

3.1.2 Solving SecPAL queries
A set of SecPAL assertions, consisting of local policy rules and assertion tokens,
determines whether an authorization request to a service is accepted. Authorization
requests are called queries in SecPAL. An atomic request is of form

 e says fact
General queries are formed from atomic queries and constraints by the logical
connectives AND, OR, NOT and EXISTS x. In the example above, a useful query
would be

Part123 is accepted.
In order to solve queries, SecPAL assertions are translated into a formal logic

model, more precisely Datalog [8], which is a restricted logic programming language,
i.e., “Prolog without function symbols”. The evaluation of a query against a set of
SecPAL assertion corresponds to a run of the corresponding Datalog program. During
such a run, nested delegation is resolved by iteration, and suitable variable
assignments are generated.

The use of an established logic model as a basis offers a clear semantics, and
because logic models like Datalog have been well studied in academia, there are
results on decidability (i.e. termination) and on runtime complexity. Moreover,
implementation methods for such logic models have been developed and iteratively
improved. More concretely, for SecPAL these results state that query evaluation is
decidable with polynomial time complexity. For practical purposes, such a statement
is valuable, as it guarantees that query evaluation is tractable even for the most
complex policies.

3.2 Other Security Token Frameworks: SAML, SOAP message security and
XACML

As already mentioned in Section 1.2, the use of security tokens is well established by
SOAP message security (WS-* security standards), the SAML and the XACML
standards. These frameworks have different goals than SecPAL, but as they are
widely used in practice and known to a broad audience, we briefly describe them in
order to show the differences to SecPAL, thereby making the goals and usage of
SecPAL clearer. The token-based security model that underlies the WS-*
specifications is explained in [9] and shown in Fig. 2. Security tokens are carried in
messages and are used to prove claims about the sender of the message, e.g. the name
of the sender, or roles and attributes, i.e. attribute-based authentication is possible.
Before sending a message, e.g. to request a service, a user has to obtain a suitable
security token from a Security Token Services (STS), which is located in the user’s
domain and hence can authenticate the user as part of a stable trust relationship.
Authentication might be via username and password, smart cards, biometrics or any
other means. The STS might impose restrictions on authentication methods, e.g.
require passwords to have a certain quality, or only allow access at office hours, or

restrict the validity period of security tokens to one day. Such requirements form the
policy of the STS.

Fig. 2 The web services security model

After obtaining a security token, which is signed by the STS, the user can make a

request to a service and include the security token into the request message. The
service or application authenticates and authorizes the user by evaluating the security
token. The service might impose its own restrictions, e.g. requirements on security
tokens like the use of specific cryptographic algorithms, acceptable maximal validity
periods and acceptable methods with which the user has been authenticated to the
STS. These restrictions form the local policy of the web service.

A widely used type of security token is SAML assertions. The SAML standard also
includes protocols for using SAML assertions for Single Sign-on, similar to Fig. 2 but
for use in web browsers rather than web services (SOAP) messages.

Neither the WS-* security specifications nor SAML do cover authorization. The
XACML standard defines an XML based policy language to describe general access
control requirements, including extension points for defining new functions, data
types, combining logic, etc. XACML also includes a request/response language to
pose queries whether or not a given action should be allowed. XACML can be used in
conjunction with SAML, i.e. a user provides a SAML security token to a service, and
based on this information and a XACML policy, the services grants access or not. In
such a setting, authentication decisions can be delegated and attribute-based
authentication and authorization can be used. The main difference to the SecPAL
framework is that delegation is implicit, i.e. it is not specified in the local policy of a
service who is trusted to make assertions, i.e. there is not equivalent to the ‘can
say’ construct of SecPAL. Consequently, chains of trust cannot be specified.
Another difference is that in XACML there is an implicit central authority that states
the policy, whereas in SecPAL, the authorship is explicit, as in ‘A says…’.

3.3 Other Logic-based Authorization and Trust Policy Languages

The use of logic for authorization and delegation was pioneered by the Speaks-for
Calculus [10], where the ‘says’ construct was introduced. Many later logic-based
authorization frameworks and trust management systems are based on variants and
extensions of Datalog with constraints [8], e.g. Binder [11], Delegation Logic [12],
and Cassandra [13]. SecPAL differs from these languages in that is offers constructs
specifically targeted for distributed authorization policies, and that it is very
expressive while requiring only a small number of constructs.

Other logic frameworks that have been used to provide semantics for policy
languages include first-order logic, e.g. for XrML in [14] and SPKI/SDSI [15], and
pushdown automata for SPKI/SDSI [16].

The development of DKAL (Distributed-Knowledge Authorization Language)
[17], another logic-based language, was based on SecPAL, and had the goal to
remove a potential information leak problem and to increase expressivity by allowing
the free use of functions. Apart from the use of function symbols, the main difference
to SecPAL is that communication is targeted, i.e. that the basic form of assertions is
not ‘A says …’ but ‘A says … to B’. In that way it can be avoided that
confidential information is leaked by posing queries that are evaluated using
confidential assertions. A revised version of DKAL, yet more expressive, is
presented in [18] SecPAL can be naturally translated into DKAL, so we could have
used DKAL instead of SecPAL. But as confidentiality is not relevant to our use case,
and we also do not need to use free functions, we decided to use SecPAL. An
important reason for our decision to use SecPAL was that an implementation is
available for SecPAL, so we could build a demonstrator for our use case, described in
Section 5.

We should stress that SecPAL is not a formal language to reason explicitly about
types of trust relationships and their quality or strength. Instead, SecPAL assertions
are used to declare on which specific topics or statements somebody is trusted,
thereby restricting the extent of trust: Parties are not assumed to trust each other fully,
but only for the topics that are explicitly specified. As topics can be freely specified in
assertions, SecPAL can be used to express fine-grained trust and access rights.
SecPAL can however not be used to reason about the resulting trust relationships in a
formal way at the metalevel as would be useful when designing a new system with
incorporated trust management.

4 Applying SecPAL to the Case Study

4.1 Building and Managing Trust between Airlines and Suppliers

We represent the scenario of Section 2.1 in terms of SecPAL policies. In that
scenario, the airline has to make decisions on whether to accept an incoming part that
originates from a supplier or the contractor of a supplier. As explained, the airline
usually does not have a stable trust relationship with suppliers or contractors, and
hence cannot verify supplier signatures directly. However, airlines do have a stable
trust relationship with the manufacturer Boeing, and in particular airlines can verify
Boeing signatures. So SecPAL assertion tokens issued by Boeing can be used to
establish trust between airlines and suppliers or contractors.

In Fig. 3 we present the SecPAL assertions of the different parties in that scenario,
i.e. the airline, Boeing, the supplier Honeywell, and various subcontractors of
Honeywell.

Fig. 3 SecPAL policies for an airline accepting parts originating from suppliers

The airline specifies in its authorization rules the conditions to accept a part. We
distinguish between critical software parts (type-1-critical) and less critical parts
(type-2-critical). Critical parts have to be approved by a supplier, while type2-critical
parts can also be approved by contractors of suppliers. In the first of its delegation
rules, the airline states that Boeing is trusted to make claims about who is a supplier.
The ‘can say’ construct is restricted by _0, meaning that the airline does not trust
statements about supplier status that Boeing makes by using itself some form of
delegation rules. The second rule, which states that suppliers are trusted to make
statements about their contractors, does not have the _0 suffix. A contractor is
allowed to have subcontractors, as long as the validity period of the contract is shorter
then the validity of his own contract with the supplier. The next four delegation rules
state that supplier and contractors are allowed to approve parts and that Boeing is the
only party that is allowed to define the criticality type of a part. The authorization
rules state that parts accepted only if they are approved by contractors or suppliers.

Only the airline specifies authorization rules, all other parties issue assertion
tokens. Boeing issues several assertion tokens, thereby making claims about its
suppliers, and classifying the criticality of parts. Honeywell, as a supplier, issues
assertion tokens about the approval of parts, and about its contractors. The various
contractors issue assertion tokens about the approval of parts, and about their
contractors. Note the different validity times for the contractors. We list some
example queries.

"SupplierPart": A software supplier delivers a part that is type1 critical for
approval by the airline.

Airline says Part123 is accepted. (valid)
"ContractorPart": A contractor of a software supplier delivers a part that is type2
critical for approval by the airline.

 Airline says Part789 is accepted. (valid)
"IllegalSubContractor”: A contractor has a contract with another contractor, and the
validity period of the subcontractor exceeds the validity period of the contractor’s
contract with the supplier. The subcontractor tries to deliver a part.

 Airline says Part890 is accepted. (invalid)
"InvalidPartType": A contractor of a software supplier delivers a part which is type1
critical for approval by the airline.

 Airline says Part234 is accepted. (invalid)

4.2 Authorizing Services to Perform Tasks in Airplanes

As a second example, we show how to implement the scenario from Section 2.2.

Fig. 4 SecPAL policy for an airplane accepting software part loading

Service providers install (load) parts from in an airplane. As service providers are
contracted by airlines at various airports for a limited time, we use SecPAL assertions
to authenticate service providers to airplanes.

As shown in Fig. 4, the authorization rules of the airplane state under which
conditions a service providers is allowed to load a part into the airplane: the part has
to be approved by the airline for the specific airplane and the person installing the part
in the airplane has to be a service providers with a valid service provider contract with
the airline. The airline is not mentioned in the authorization rules directly, but comes
into play by the delegation rules or the airplane, where the airplane states that its
airline is trusted to issue SecPAL assertion tokens about who is a service provider,
and which parts are approved.

The airline issues a range of assertion tokens about current service providers and
about approved parts. A service provider has to authenticate towards an airline in
order to get an assertion token about his identity. How this is done is not addressed by
the SecPAL policy – it could by done by personal exchange at some airline authority
at an airport.

Note that most principal names in SecPAL assertions denote public keys and that
all SecPAL assertions of the form ‘A says …’ are signed with the public key of A. So
in the assertion token ‘Airline says Service24 is a servicer till 2010/12/31 for type
“787”. Service24 is a public key of a current service provider, and when the airplane
receives the token, it validates the signature to verify that its airline has issued the
token. As the airplane and the airline have a stable long-term relationship, the airplane
knows the public key of its airline and can perform the signature verification. After
accepting the token, the airplane with tail number 1234 accepts the public key of
Service24, and can use this key for authentication of the service provider, e.g. by
using SSL. Again, we list example queries.
"ServicerValid": A service provider who is authorized by the airline for an airplane
type wants to load a part which was approved by the airline and released for upload to
the actual airplane.
 Airline says Service24 can install Part123. (valid)

"ServicerOutdated": A service provider whose contract with the airline has expired,
wants to load a part which was approved by the airline and released for upload to the
actual airplane.
 Airline says Service2000 can install Part123. (invalid)

"ServicerIncompetent": A service provider who has a valid contract with the airline,
but for a different airplane type, wants to load a part which was approved by the
airline and released for upload to the actual airplane.

 Airline says ServiceAB can install Part123. (invalid)

5 Demonstrator

As part of the project, a demonstrator application has been created to show how the
scenarios described in the previous section can be evaluated with SecPAL. An
implementation is of course very helpful in developing a case study because it allows
to check whether the statements have the intended meaning, and to experiment with
different formulations.

Our demonstrator is based on the SecPAL Authorization Engine provided by
Microsoft and available at [7]. A Windows forms application called "QueryEditor" is
also offered by Microsoft. The QueryEditor offers the user basic English language

constructs to automatically generate policies, assertions and queries. But as the
automatic generation proved to be too restricted for our case study scenarios, we
implemented the scenarios manually in C#, using the provided SecPAL class libraries.

The QueryEditor serves as user interface to start query evaluation. If a query is
accepted, the corresponding proof tree can be examined. The Query editor can save
assertions as XML files. The XML representation of policies and assertions will be
the basis for real world implementations of SecPAL applications that can be
integrated with distributed services.

The figures below are screenshots of the QueryEditor application. The “Principals”
tab contains all principals that are part of the sample. Using the next two tabs, the
policies and assertions of all principals and the queries can be displayed. Fig. 5 shows
the assertions for the "ServicerValid" sample query. The underlying C# code, whether
generated or written manually, can be seen at the “C# Code” tab .

The button "Evaluate" starts the evaluation of the query. Using the "Proof Graph"
tab, the proof of the evaluation can be displayed when successful (Fig. 6).

Fig. 5 QueryEditor: Assertions

Fig. 6 QueryEditor: Proof Tree

Conclusion

Currently trust and authorization across domain boundaries is often established by
setting up contractual agreements and inserting appropriate PKI certificates into local
certificate stores. Doing so will become unmanageable when data exchanges between
partners without long-term trust relationships increase. By handling a real-life use
case, we have convinced ourselves that logic-based policy languages for authorization
and trust, in particular SecPAL, are well suited to address this challenge. We found
that we could handle our case study in a straightforward way, and that the resulting
policies are easy to grasp for non-experts. Microsoft’s implementation of SecPAL
served as a practical proof of concept. However, for a wider applicability of SecPAL
or its successor languages, it would be important to have a standardization of the
language in the form of a syntax coding, say, in XML, a binding to transport
protocols, and a processing model. We will continue to apply SecPAL or its successor
languages whenever appropriate in our future work. For instance, we are investigating
the use of DKAL for the application scenarios of AVANTSSAR [19].

References

[1] The WS-*, SAML and XACML standards are available at http://www.oasis-open.org/specs/
[2] Microsoft Corporation: Introducing Windows CardSpace. Available at

 http://msdn.microsoft.com/en-us/library/aa480189.aspx

http://www.oasis-open.org/specs/
http://msdn.microsoft.com/en-us/library/aa480189.aspx

[3] Soghoian, C., Stamm, S.: Certified Lies: Detecting and Defeating Government Interception
Attacks Against SSL. Under submission.

[4] Maidl, M., von Oheimb, D., Hartmann, P., Robinson, R.: Formal Security Analysis of
Electronic Software Distribution Systems. In: SAFECOMP 2008. LNCS, vol. 5219, pp.
415—428. Springer, Heidelberg (2008)

[5] Nigriny, J., Phaltankar, K.: Identity Assurance in Commercial Aviation Facilitated Through
a Trusted Third Party Hub. White paper of CertiPath, available online at
http://www.certipath.com/white-papers.htm

[6] Becker, M., Fournet, C., Gordon, A.: SecPAL: Design and Semantics of a Decentralized
Authorization Language. In: 20th IEEE Computer Security Foundations Symposium, pp.
3—15. IEEE Press, New York (2007)

[7] SecPAL homepage. http://research.microsoft.com/en-us/projects/SecPAL/
[8] Li, N., Mitchell, J.C.: Datalog with Constraints: A Foundation for Trust Management

Languages. In: PADL 2003, LNCS, vol.2562, pp. 58—73. Springer, Heidelberg (2003)
[9] IBM Corporation and Microsoft Corporation: Security in a Web Services World: A

Proposed Architecture and Roadmap. Available online at
http://www.ibm.com/developerworks/library/specification/ws-secmap/ (2002)

[10] Abadi, M., Burrows, M., Lampson, B., Plotkin, G.: A Calculus for Access Control in
Distributed Systems. ACM Transactions on Programming Languages and Systems, 15:4, pp.
706—734 (1993)

[11] DeTreville, J.: Binder, a logic-based security language. In: IEEE Symposium on Security
and Privacy, pp.105—113. IEEE Press, New York (2002)

[12] Li, N., Grosof, B., Feigenbaum, J.: Delegation Logic. In: ACM Trans. on Information and
System Security (TISSEC) 6:1, pp. 128—171 (2003)

[13] Becker, M., Sewell, P.: Cassandra: Flexible trust management, Applied to Electronic
Health Records. In: 17th IEEE Computer Security Foundations Workshop (CSFW), IEEE
Press, New York (2004)

[14] Halpern, J.Y., Weissmann, V. A formal foundation of XrML. In: 17th IEEE Computer
Security Foundations Workshop (CSFW), IEEE Press, New York (2004)

[15] Li, N, Mitchell, J. C.: Understanding SPKI/SDSI using first-order logic. In: 16th IEEE
Computer Security Foundations Workshop (CSFW), pp. 89—103. IEEE Press, New York
(2003)

[16] Jha, S., Schwoon, S., Wang, H., Reps, T.: Weighted Pushdown Systems and Trust-
Management Systems. In: TACAS 2006. LNCS, vol. 3920, pp. 1—26. Springer, Heidelberg
(2006).

[17] Gurevich, Y., Neeman, I.: DKAL: Distributed-Knowledge Authorization Language. In:
21th IEEE Computer Security Foundations Workshop (CSFW), pp. 149—162. IEEE Press,
New York (2008)

[18] Gurevich, Y., Neeman, I.: A Simplified and Improved Authorization Language. Microsoft
Research Tech Report, February 2009, available online at http://research.microsoft.com/en-
us/um/people/gurevich/dkal.htm

[19] EU-funded project AVANTSSAR: Automated Validation of Trust and Security of
Service-oriented Architectures. http://avantssar.eu/

http://www.certipath.com/white-papers.htm
http://research.microsoft.com/en-us/projects/SecPAL/
http://www.ibm.com/developerworks/library/specification/ws-secmap/
http://research.microsoft.com/en-us/um/people/gurevich/dkal.htm
http://research.microsoft.com/en-us/um/people/gurevich/dkal.htm
http://avantssar.eu/

