
This is a preprint version of chapter four of

@incollection{Oheimb-Nipkow-Java-LNCS,

author = {Oheimb, David von and Nipkow, Tobias},

title = {Machine-checking the {J}ava Specification:

Proving Type-Safety},

booktitle = {Formal Syntax and Semantics of {J}ava},

editor = {Jim Alves-Foss},

url = {http://isabelle.in.tum.de/Bali/doc/Springer98.html},

publisher = {Springer},

series = {LNCS},

volume = {1523},

pages = {119-156}

year = {1999}

}

Machine-checking the Java Speci�cation:

Proving Type-Safety

?

David von Oheimb

??

and Tobias Nipkow

Fakult�at f�ur Informatik, Technische Universit�at M�unchen

http://www.in.tum.de/~oheimb

http://www.in.tum.de/~nipkow

Abstract. In this article we present Bali, the formalization of a large

(hitherto sequential) sublanguage of Java. We give its abstract syntax,

type system, well-formedness conditions, and an operational evaluation

semantics. Based on these de�nitions, we can express soundness of the

type system, an important design goal claimed to be reached by the

designers of Java, and prove that Bali is indeed type-safe.

All de�nitions and proofs have been done formally in the theorem prover

Isabelle/HOL. Thus this article demonstrates that machine-checking the

design of non-trivial programming languages has become a reality.

1 Introduction

Bali is a large subset of Java [GJS96]. This article presents its formalization

and the proof of a key property, namely the soundness of its type system |

speci�ed and veri�ed in the theorem prover Isabelle/HOL [Pau94].

On the face of it, this article is mostly about Bali, its abstract syntax, type

system, well-formedness conditions, and operational semantics, formalized as a

hierarchy of Isabelle theories, and the structure of the machine-checked proof of

type soundness and its implications. Although these technicalities do indeed take

up much of the space, there is a meta-theme running through the article, which

we consider even more important: the technology for producing machine-checked

programming language designs has arrived.

We emphasize that by `machine-checked' we do not just mean that it has

passed some type checker, but that some non-trivial properties of the language

have been established with the help of a (semi-automatic) theorem prover. The

latter process is still not a piece of cake, but it has become more than just

feasible. Therefore any programming language intended for serious applications

should strive for such a machine-checked design. The bene�ts are not just greater

reliability, but also greater maintainability because the theorem prover keeps

track of the impact that changes have on already established properties.

?

This is a completely revised and extended version of [NO98].

??

Research supported by DFG SPP Deduktion.

Note that the type-safety of Java is not su�cient to guarantee secure execu-

tion of bytecode programs on the Java Virtual Machine, because the bytecode

might be tampered with, produced by a faulty compiler, or not be related to

any Java source program at all. This was the main reason for introducing the

Bytecode Veri�er in the JVM, which checks the integrity, in particular type-

correctness, of any bytecode before execution. Of course similar security prob-

lems arise for any other high-level languages as well. Nevertheless, the investiga-

tion of type-safety at source level is worthwhile: it checks whether the language

design is sound, which means that at least all the necessary conditions express-

ible at that level are ful�lled. In particular static typing loses much of its raison

d'être if the language is not type-safe.

1.1 Related work

The history of type soundness proofs goes back to the subject reduction theo-

rem for typed �-calculus but starts in earnest with Milner's slogan `Well-typed

expressions do not go wrong' [Mil78] in the context of ML. Milner uses a de-

notational semantics, in contrast to most of the later work, including ours. The

question of type-safety came to prominence with the discovery of its failure in

Ei�el [Coo89]. Ever since, many designers of programming languages (especially

OO ones) have been at pains to prove type-safety of their languages (see, for

example, the series of papers by Bruce et al. [Bru93,BCM

+

93,BvGS95]).

Directly related to our work is that by Drossopoulou and Eisenbach [DE98]

who prove (on paper) type-safety of a subset of Java very similar to Bali.

Although we were familiar with an earlier version [DE97] of their work and

have certainly pro�ted from it, our work is not a formalization of theirs in

Isabelle/HOL but di�ers in many respects from it, for example in the repre-

sentation of programs and the use of an evaluation (aka \big-step") semantics

instead of a transition (aka \small-step") semantics. Simultaneously with our

work, Syme [Sym98] formalized the paper [DE97] as far as possible, uncovering

two signi�cant mistakes, both in connection with the use of transition semantics.

Syme uses his own theorem prover DECLARE, also based on higher-order logic.

There are two other e�orts to formalize aspects of Java in a theorem prover.

Dean [Dea97] studies the interaction of static typing with dynamic linking. His

simple PVS speci�cation addresses only the linking aspect and requires a formal-

ization of Java (such as our work provides) to turn his lemmas about linking into

theorems about the type-safety of dynamically linked programs. Cohen [Coh97]

has formalized the semantics of large parts of the Java Virtual Machine, essen-

tially by writing an interpreter in Common Lisp. He used ACL2, the latest ver-

sion of the Boyer-Moore theorem prover [BM88]. No proofs have been reported

yet.

2

2 Overview

Bali includes the features of Java that we believe to be important for an inves-

tigation of the semantics of a practical imperative object-oriented language:

{ class and interface declarations with instance �elds and methods,

{ subinterface, subclass, and implementation relations

with inheritance, overriding, and hiding,

{ method calls with static overloading and dynamic binding,

{ some primitive types, objects (including arrays),

{ exception throwing and handling.

This portion of Java is very similar to that covered by [DE98] and [Sym98].

We do not consider Java packages and separate compilation. For the moment,

we also leave out several features of Java like class variables and static methods,

constructors and �nalizers, the visibility of names, and concurrency, but we aim

to include at least part of them in later stages of our project. Some constructs

are simpli�ed without limiting the expressiveness of the language (see x4.1).

In developing the formalization of Bali and investigating its properties, we

aim to meet the following design goals:

{ faithfulness to the o�cial language speci�cation,

{ succinctness and simplicity,

{ maintainability and extendibility,

{ adequacy for the theorem prover.

It might be interesting to keep these goals in mind while reading x4 on the

formalization of Bali and x5 on our proofs and check how far we have reached

them. We comment on our experience in pursuing these goals in x6.

3 The basics of Isabelle/HOL

Before we present the formalization of Bali, we brie
y introduce the underlying

theorem proving system Isabelle/HOL.

Isabelle/HOL is the instantiation of the generic interactive theorem prover

Isabelle [Pau94] with Church's version of Higher-Order Logic and is very close

to Gordon's HOL system [GM93]. In this article HOL is short for Isabelle/HOL.

The appearance of formulas is standard, e.g. `�!' is the (right-associative)

in�x implication symbol. Predicates are functions with Boolean result. Function

application is written in curried style. For descriptions we apply Hilbert's choice

operator ", where "x. P x denotes some value x satisfying P, or an arbitrary value

if no such x exists.

Logical constants are declared by giving their name and type, separated by

`::'. Primitive recursive function de�nitions are written as usual. Non-recursive

de�nitions are written with `

def

='.

Types follow the syntax of ML, except that the function arrow is `)'. Type

abbreviations are introduced simply as equations. A free datatype is de�ned by

listing its constructors together with their argument types, separated by `j'.

3

There are the basic types bool and int, as well as the polymorphic type (�)set

of homogeneous sets for any type �. Occasionally we apply the in�x `image'

operator lifting a function over a set, de�ned as f\S

def

= fy. 9x2S. y = f xg.

The product type �� � comes with the projection functions fst and snd.

Tuples are pairs nested to the right, e.g. (a,b,c) = (a,(b,c)).

As the list type (�)list is de�ned via its constructors [] denoting the empty

list and the in�x `cons' operator `#', it can be introduced by the datatype

declaration

(�)list = [] j �#(�)list

The concatenation operator on lists is written as the in�x symbol `@'. There

is a functional map :: (�) �)) (�)list) (�)list applying a function to all

elements of a list, as well as a conversion function set :: (�)list) (�)set.

We frequently use the datatype

(�)option = None j Some �

It has an unpacking function the :: (�)option) � such that the (Some x) = x

and the None = arbitrary, where arbitrary is an unknown value de�ned as "x.False.

There is a simple function mapping o2s :: (�)option) (�)set converting an op-

tional value to a set, with the characteristic equations o2s (Some x) = fxg and

o2s None = fg.

Most of the HOL text shown in this article is directly taken from the input

�les. However, it has been massaged by hand to hide Isabelle idiosyncrasies, in-

crease readability, and adapt the layout. Minor typos may have been introduced

in the process.

We adopt the following typographic conventions: Java keywords like catch

appear in typewriter font, the names of logical constants like c�eld appear in

sans serif, while type names like state and meta-variables like v appear in italics.

4 The formalization of Bali

This section presents all aspects of our formalization of Bali

1

.

As far as Bali is a subset of Java, it strictly adheres to the Java language

speci�cation [GJS96], with several generalizations:

{ we allow the result type of a method overriding another method to widen to

the result type of the other method instead of requiring it to be identical.

{ if a class or an interface inherits more than one method with the same

signature, the methods need not have identical return types.

{ no check of result types in dynamic method lookup.

{ the type of an assignment is determined by the right-hand side, which can

be more speci�c than the left-hand side.

1

The Isabelle sources are available from the Bali project page

http://www.in.tum.de/~isabelle/bali/

4

We found several issues concerning exceptions not speci�ed in [GJS96] and

therefore de�ne a reasonable behavior that seems to be consistent with current

implementations:

{ given a Null reference, the throw statement raises a NullPointer exception.

{ each system exception thrown yields a fresh exception object.

{ if there is not enough memory even to allocate an OutOfMemory error, pro-

gram execution simply halts. (Our experiments showed erratic behavior of

some implementation in this case, ranging from sudden termination without

executing finally blocks, over hangup, to repeated invocation of a single

exception handler!)

To illustrate our approach, we use the following (arti�cial) example.

class Base {

boolean vee;

Base foo(Base x) {

return x;

}

}

class Ext extends Base{

int vee;

Ext foo(Base x) {

((Ext)x).vee=1;

return null;

}

}

Base e;

e=new Ext();

try {e.foo(null); }

catch (NullPointerException x) {throw x;}

This program fragment consists of two simple but complete class declarations

and a block of statements that might occur in any method that has access to

these declarations. It contains the following features of Bali:

{ class declarations with inheritance, hiding of �elds, and overriding of meth-

ods (with re�ned result type),

{ return expressions, parameter access,

{ sequential composition, expression statements, �eld assignment, type cast,

local accesses, literal values, exception propagation,

{ local assignment, instance creation,

{ try & catch statement, method call (with dynamic binding), throw statement

5

4.1 Abstract syntax

First, we describe how we represent the syntax of Bali and which abstractions

we have introduced thereby.

Programs A Bali program is a pair of lists of interface and class declarations:

prog = (idecl)list � (cdecl)list

Throughout the article, the symbol `� ' denotes a Bali program, as we use

programs as part of the static type context de�ned in x4.2.

Each declaration is a pair of a name and the de�ned entity. Some names, like

those of prede�ned classes (including those of system exceptions xname), have

a prede�ned meaning and are therefore handled extra. We do not specify the

structure of names further, but use the opaque HOL types tname0, mname, and

ename0 for user-de�ned type names, method names, and \expression names"

(i.e. �eld and variable identi�ers).

xname = Throwable

j NullPointer j OutOfMemory j ClassCast

j NegArrSize j IndOutBound j ArrStore

tname = Object name of the top of the class hierarchy

j SXcpt xname name of a system exception

j TName tname0 other class or interface name

ename = this special name for this pointer

j EName ename0 expression name

An interface (iface) contains lists of superinterface names and method decla-

rations. A class speci�es the names of an optional superclass and implemented

interfaces, and lists of �eld and method declarations.

iface = (tname)list� (sig �mhead)list

idecl = tname� iface

class = (tname)option � (tname)list� (fdecl)list � (mdecl)list

cdecl = tname� class

A �eld declaration (fdecl) simply gives the �eld type (ty, see x4.2). A method

declaration (sig �mhead for interfaces or mdecl for classes) consists of a \sig-

nature" [GJS96, 8.4.2] (i.e. the method name and the list of parameter types,

excluding the result type) followed by mhead, consisting of the list of param-

eter names and the result type, and (if it appears within a class) the method

body (mbody). The latter consists of the list of local variables, a statement stmt

as body, and a return expression expr (see below). As in [DE98], the separate

return expression saves us from dealing with return statements occurring in ar-

bitrary positions within the method body. Such statements may be replaced by

6

assignments to a suitable result variable followed by a control transfer to the end

of the method body, using the result variable as return expression. We provide a

dummy result type and value for void methods. For simplicity, up to now each

method has exactly one parameter; multiple parameters can be simulated by a

single parameter object with multiple �elds.

�eld = ty �eld type

fdecl = ename � �eld

sig = mname � ty method name and parameter type

mhead = ename � ty parameter name and result type

lvar = ename � ty local variable name and type

mbody = (lvar)list� stmt� expr local vars, block, and return expression

methd = mhead �mbody method (of a class)

mdecl = sig �methd

In the abstract syntax given above, the formalization of our example program

fragment looks like this:

BaseC

def

= (Base, (Some Object,

[],

[(vee, PrimT boolean)],

[((foo,Class Base),(x,Class Base), ([],Skip,x))]))

ExtC

def

= (Ext, (Some Base,

[],

[(vee, PrimT int)],

[((foo,Class Base),(x,Class Ext), ([],

Expr(fClassT Extg(Class Ext)x.vee:=Lit (Intg 1)),

Lit Null))]))

classes

def

= [ObjectC,

SXcptC Throwable,

SXcptC NullPointer, SXcptC OutOfMemory, SXcptC ClassCast,

SXcptC NegArrSize, SXcptC IndOutBound, SXcptC ArrStore,

BaseC, ExtC]

tprg

def

= ([],classes)

test

def

= Expr(e:=new Ext);

try Expr(e.foo(fClass BasegLit Null))

catch((SXcpt NullPointer) x) (throw x)

where Base stands for TName Base , Ext for TName Ext , and similarly for

vee, x, and e. The constants Base , Ext , etc. are all distinct. The sequence of

statements test could have been embedded in tprg, which we have left out for

simplicity.

7

Representation of lookup tables The representation of declarations as lists

gives an implicit �niteness constraint, which turns out to be necessary for the

well-foundedness of the subclass and subinterface relation. The list represen-

tation also enables an explicit check whether the declared entities are named

uniquely, implemented with the function unique given below. This function does

not check for duplicate de�nitions, which is harmless.

unique :: (�� �)list) bool

unique t

def

= 8(x

1

,y

1

)2set t. 8(x

2

,y

2

)2set t. x

1

= x

2

�! y

1

= y

2

For the lookup of declared entities, we transform declaration lists into ab-

stract tables. They are realized in HOL as \partial" functions mapping names

to values:

(�,�)table = �) (�)option

The empty table, pointwise update, extension of one table by another, the func-

tion converting a declaration list into a table, and an auxiliary predicate relating

entries of two tables, are de�ned easily:

empty :: (�,�)table

[7!] :: (�,�)table) �) �) (�,�)table

� :: (�,�)table) (�,�)table) (�,�)table

table of :: (���)list) (�,�)table

hiding

entails :: (�,�)table) (�,
)table) (�)
) bool)) bool

empty

def

= �k. None

t[x 7!y]

def

= �k. if k = x then Some y else t k

s � t

def

= �k. case t k of None) s k j Some x) Some x

table of [] = empty

table of ((k,x)#t) = (table of t)[k 7!x]

t hiding s entails R

def

= 8k x y. t k = Some x �! s k = Some y �! R x y

For the union of tables, we also need the type of non-unique tables,

(�,�)tables = �) (�)set

together with a union operator and straightforward variants of two of the notions

de�ned above:

�� :: (�,�)tables) (�,�)tables) (�,�)tables

Un tables :: ((�,�)tables)set) (�,�)tables

hidings

entails :: (�,�)tables) (�,
)tables) (�)
) bool)) bool

8

Un tables ts

def

= �k.

S

t2ts. t k

s �� t

def

= �k. if t k = fg then s k else t k

t hidings s entails R

def

= 8k. 8x2t k. 8y2s k. R x y

A simple application of type table is the translation of programs to tables

indexed by interface and class names:

iface :: prog) (tname, iface)table

def

= table of � fst

class :: prog) (tname, class)table

def

= table of � snd

More interesting are the following functions that traverse the type hierarchy

of a program, collecting the methods and �elds into a table (the types tname

and ref ty are de�ned in x4.2):

imethds :: prog) tname) (sig, ref ty �mhead)tables

cmethd :: prog) tname) (sig, ref ty �methd)table

�elds :: prog) tname) ((ename � ref ty)� �eld)list

Note that imethds collects a non-unique table of method declarations allowing

for inheritance of more than one method with the same signature.

As Syme [Sym98] points out, a naive recursive de�nition of these functions is

not possible in HOL because the class hierarchy might be cyclic, which is ruled

out for well-formed programs (see x4.3) only. This leads to partial functions,

which HOL does not support directly. Syme de�nes these functions as relations

instead. In contrast, we have chosen to de�ne them as proper functions, based on

Slind's work on well-founded recursion [Sli96]. We do not give their de�nitions,

but only the recursion equations, which we derive as easy consequences:

wf prog � ^ iface � I = Some (is,ms) �!

imethds � I = Un tables ((�J. imethds � J)\ set is) ��

(o2s � table of (map (�(s,mh). (s,IfaceT I,mh)) ms))

wf prog � ^ class � C = Some (sc,si,fs,ms) �!

cmethd � C = (case sc of None) empty j Some D) cmethd � D) �

table of (map (�(s,m). (s,(ClassT C,m))) ms)

wf prog � ^ class � C = Some (sc,si,fs,ms) �!

�elds � C = map (�(fn,ft). ((fn,ClassT C),ft)) fs @

(case sc of None) [] j Some D) �elds � D)

The structure of the three equations is the same: the tables are constructed

recursively from the corresponding tables of the superinterfaces or the superclass

(if any), which models inheritance, augmented| with overriding| by the newly

declared items. All declared items receive an extra label, namely their de�ning

interface or class.

9

In our example, we obtain

�elds tprg Base = [((vee, ClassT Base), PrimT boolean)]

�elds tprg Ext = [((vee, ClassT Ext), PrimT int),

((vee, ClassT Base), PrimT boolean)]

cmethd tprg Base = empty[(foo, Class Base) 7!

(ClassT Base, (x, Class Base), ([], Skip, x))]

cmethd tprg Ext = empty[(foo, Class Base) 7!

(ClassT Ext , (x, Class Ext), ([],

Expr(fClassT Extg(Class Ext)x.vee:=Lit (Intg 1)),

Lit Null))]

Terms We de�ne statements (appearing in method bodies), expressions (ap-

pearing in statements), and values (appearing in expressions) as recursive data-

types.

Statements are reduced to their bare essentials. We do not formalize syntactic

variants of conditionals and loops. Neither do we consider jumps like the break

statement.

For a more modular description, we divide the try catch finally

statement into a try catch statement and a finally statement, which

might be used in any context. Our version of the try catch statement has

exactly one catch clause. Multiple catch clauses can be simulated with cascaded

if else statements applying the instanceof operator.

stmt = Skip

j Expr expr

j stmt; stmt

j if (expr) stmt else stmt

j while(expr) stmt

j throw(expr)

j try stmt catch(tname ename) stmt

j stmt finally stmt

Skip denotes the empty statement. The \expression statement" Expr is a con-

version from expressions to statements causing evaluation for side e�ects only.

Assignments and method calls, which are expressions because they yield a value,

can be turned into statements this way. In contrast to Java, for simplicity we

allow this conversion to be applied to any kind of expression.

Concerning expressions, our formalization leaves out the standard unary and

binary operators as their typing and semantics is straightforward. The this

expression is modeled as a special non-assignable local variable named this.

The super construct can be simulated with a this expression that is cast to

the superclass of the current class. Creation of multi-dimensional arrays can

be simulated with nested array creation, while access and assignment to multi-

dimensional arrays is nested anyway.

10

It might be reasonable to introduce the general notion of variables (i.e. left-

hand sides of assignments) in order to factor out common behavior of local

variables, class instance variables, and array components. But we have chosen

not to do so because the semantic treatment of these three variants of variables

di�ers considerably. This decision leads to some redundancy between access and

assignment, especially in the semantics for arrays.

expr = new tname class instance creation

j new ty[expr] array creation

j (ty)expr type cast

j expr instanceof ref ty type comparison operator

j Lit val literal

j ename local/parameter access

j ename:=expr local/parameter assignment

j fref tygexpr.ename �eld access

j fref tygexpr.ename:=expr �eld assignment

j expr[expr] array access

j expr[expr]:=expr array assignment

j expr.mname(ftygexpr) method call

The terms in braces f. . . g above are called type annotations. Strictly speaking,

they are not part of the input language but serve as auxiliary information (com-

puted by the type checker) that is crucial for the static binding of �elds and

the resolution of method overloading. Distinguishing between the actual input

language and the augmented language would lead to a considerable amount of

redundancy. We avoid this by assuming that the annotations are added before-

hand by a kind of preprocessor. The correctness of the annotations is checked

by the typing rules (see x4.2).

The de�nition of values is straightforward. It relies on the standard HOL

types of Boolean values (bool) and integers (int), whereas the type loc of locations,

i.e. abstract non-null addresses of objects, is not further speci�ed.

val = Unit dummy result of void methods

j Bool bool

j Intg int

j Null

j Addr loc

The de�nitions below give some simple destructor functions for val with their

characteristic properties.

the Bool :: val) bool

the Intg :: val) int

the Addr :: val) loc

the Bool (Bool b) = b

the Intg (Intg i) = i

the Addr (Addr a) = a

11

4.2 Type system

This section de�nes types, various ordering relations between types, and the

typing rules for statements and expressions.

Types We formalize Bali types as values of datatype ty, dividing them into

primitive and reference types:

prim ty = void

j boolean

j int

ref ty = NullT

j IfaceT tname

j ClassT tname

j ArrayT ty

ty = PrimT prim ty

j RefT ref ty

void is used as a dummy type for methods without result. In the sequel NT

stands for RefT NullT, Iface I for RefT(IfaceT I), Class C for RefT(ClassT C),

and T[] for RefT(ArrayT T).

An interface or class type is considered as a proper type only if there is a

corresponding declaration for its type name in the current program, which is

checked by the following predicates:

is iface :: prog) tname) bool

is class :: prog) tname) bool

is type :: prog) ty) bool

is iface � tn

def

= iface � tn 6= None

is class � tn

def

= class � tn 6= None

is type � (PrimT) = True

is type � NT = True

is type � (Iface I) = is iface � I

is type � (Class C) = is class � C

is type � (T[]) = is type � T

For all types, a default value is de�ned via

default val :: ty) val

default val (PrimT void) = Unit

default val (PrimT boolean) = Bool False

default val (PrimT int) = Intg 0

default val (RefT r) = Null

12

Type relations The relations between types depend on the interface and class

hierarchy of a given program � , and are therefore expressed with reference to � .

The direct subinterface (` �

1

i

), subclass (` �

1

c

), and implementation

(` ;

1

) relations are of type prog � tname� tname) bool and are de�ned

as follows:

� ` I�

1

i

J

def

= is iface � I ^ is iface � J ^ J 2 set (fst(the(iface � I)))

� `C�

1

c

D

def

= is class � C ^ is class � D ^ Some D = fst(the(class � C))

� `C;

1

I

def

= is class � C ^ is iface � I ^ I 2 set (fst(snd(the(class � C))))

The transitive (but not re
exive) closures ` �

i

and ` �

c

can be

de�ned inductively:

� ` I�

1

i

K

� ` I�

i

K

� ` I�

i

J; � ` J�

i

K

� ` I�

i

K

� ` C�

1

c

E

� `C�

c

E

� `C�

c

D; � `D�

c

E

� `C�

c

E

There is also a kind of transitive closure of ` ;

1

de�ned as

� `C;

1

J

� `C;J

� `C;

1

I; � ` I�

i

J

� `C;J

� ` C�

1

c

D; � `D;J

� ` C;J

The key relation is widening: � ` S�T, where S and T are of type ty, means

that S is a syntactic subtype of T, i.e. in any expression context (especially

assignments and method invocations) expecting a value of type T, a value of

type S may occur. Note that this does not necessarily mean that type S behaves

like type T, but only that it has a syntactically compatible set of �elds and

methods. The widening relation is de�ned inductively as given below. Note that

some rules carry the additional premise that Object is a proper class, which will

be ensured for well-formed programs.

is type � T

� ` T�T

is type � (RefT R)

� `NT � RefT R

� ` I�

i

J

� ` Iface I � Iface J

is iface � I; is class � Object

� ` Iface I � Class Object

� `C�

c

D

� ` Class C � Class D

� `C; I

� ` Class C � Iface I

� ` RefT S � RefT T

� ` (RefT S)[] � (RefT T)[]

is type � T; is class � Object

� ` T[] � Class Object

To allow for type casting we also have the casting relation, where � ` S�

?

T

means that a value of type S may be cast to type T:

� ` S�T

� ` S�

?

T

� `C�

c

D

� ` Class D �

?

Class C

is class � C; is iface � I

� ` Class C �

?

Iface I

� ` RefT S �

?

RefT T

� ` (RefT S)[] �

?

(RefT T)[]

is class � Object; is type � T

� ` Class Object �

?

T[]

13

is iface � J; :� ` I�

i

J;

imethds � I hidings imethds � J entails

(�(m

1

,(pn

1

,rT

1

)) (m

2

,(pn

2

,rT

2

)). � ` rT

1

�rT

2

)

� ` Iface I �

?

Iface J

is iface � I; is class � C

� ` Iface I �

?

Class C

Typing rules Now we come to type-checking itself, which is expressed as a set

of constraints on the types of expressions, relative to a type environment.

An environment consists of a global part, namely a program � , and a local

part (written `�'), namely the types of the local variables including the current

class, i.e. the type of this:

lenv = (ename, ty) table

env = prog � lenv

prg :: env) prog

def

= �(� ,�). �

lcl :: env) lenv

def

= �(� ,�). �

The well-typedness of statements and the typing of expressions are de�ned

inductively relative to an environment. The typing of expressions is unique, as

can be shown easily by rule induction.

` ::3 :: env) stmt) bool

` :: :: env) expr) ty) bool

The type-checking rules for most statements are standard:

E ` Skip ::3

E ` e::T

E ` Expr e::3

E ` c

1

::3 ; E ` c

2

::3

E ` c

1

; c

2

::3

E ` e::PrimT boolean; E ` c

1

::3 ; E ` c

2

::3

E ` if(e) c

1

else c

2

::3

E ` e::PrimT boolean; E ` c::3

E ` while(e) c::3

E ` c

1

::3 ; E ` c

2

::3

E ` c

1

finally c

2

Note the use of the widening relation in the following two rules to ensure

that a value thrown or caught as an exception is indeed a exception object.

E ` e::Class tn; prg E ` Class tn�Class (SXcpt Throwable)

E ` throw e::3

(� ,�) ` c

1

::3 ; � ` Class tn�Class (SXcpt Throwable);

� vn = None; (� ,�[vn7!Class tn]) ` c

2

::3

(� ,�) ` try c

1

catch(tn vn) c

2

::3

The try catch statement is the only one that involves a change of the type

environment, namely to include typing information for the exception parameter.

The name of this parameter is required to be new in the local environment.

14

The typing rules for the �rst few of the expressions are straightforward,

except for the confusing direction of the casting relation in the type cast rule:

is class (prg E) C

E ` new C::Class C

is type (prg E) T; E ` i::PrimT int

E ` new T[i]::T[]

E ` e::T; prg E `T�

?

T

0

E ` (T

0

)e::T

0

typeof (�a. None) x = Some T

E ` Lit x::T

E ` e::RefT T; prg E ` RefT T�

?

RefT T

0

E ` e instanceof T

0

::PrimT boolean

The rule for Lit prohibits addresses as literal values, which is implemented by

supplying �a. None as the \dynamic type" argument in the call of the function

typeof :: (loc) ty option)) val) ty option

typeof dt Unit = Some (PrimT void)

typeof dt (Bool b) = Some (PrimT boolean)

typeof dt (Intg i) = Some (PrimT int)

typeof dt Null = Some (RefT NullT)

typeof dt (Addr a) = dt a

This function is reused below with a more interesting value for the parameter

dt, namely a function to compute the dynamic type of a reference.

The typings of all three assignment variants are quite similar, except that for

local variables additionally an assignment to this is forbidden. In any case, as a

generalization to the Java speci�cation, the type of the assignment is determined

by the right-hand (as opposed to the left-hand) side.

lcl E vn = Some T; is type (prg E) T

E ` vn::T

E ` vn::T; E ` v::T

0

; prg E ` T

0

�T; vn 6= this

E ` vn:=v::T

0

E ` e::Class C; c�eld (prg E) C fn = Some (fd,fT)

E ` ffdge.fn::fT

E ` ffdge.fn::T; E ` v::T

0

; prg E ` T

0

�T

E ` ffdge.fn:=v::T

0

E ` a::T[]; E ` i::PrimT int

E ` a[i]::T

E ` a[i]::T; E ` v::T

0

; prg E `T

0

�T

E ` a[i]:=v::T

0

E ` e::RefT T; E ` p::pT;

max spec (prg E) T (mn,pT) = f((md,(pn,rT)),pT

0

)g

E ` e.mn(fpT

0

gp)::rT

15

The function c�eld :: prog) tname) (ename , ref ty� �eld)table , de�ned as

c�eld � C

def

= table of ((map (�((n,d),t). (n,(d,t)))) (�elds � C)), is a variant of

�elds. It implements a �eld lookup that is based on the �eld name alone in

contrast to a combination of �eld name and de�ning class. Thus in the above

typing rule for �eld access, equal �eld names hide each other, while at run-time

all �elds are accessible, using the de�ning class as an additional search key.

The type annotations f. . . g in the above rules for �eld access and method call

are used to implement static binding for �elds and to resolve overloaded method

names statically. Technically speaking, the typing rules serve as constraints on

these annotations during type-checking, but one can also think of the annotations

being �lled with schematic variables that are instantiated with their correct

values in the type-checking process, as is demonstrated in the example overleaf.

The value of each annotation is uniquely determined by the value of a function

in the premise of the �eld access and method call rule:

A �eld access ffdge.fn is annotated with the de�ning class of the �eld found

when searching the class hierarchy for the name fn (using c�eld), starting from

the static type Class C of e. The annotation ffdg will be used at run-time to

access the �eld via the pair (fn,fd).

A method call e.mn(fpT

0

gp) is type-correct only if the function max spec

determining the set of \maximally speci�c" [GJS96, 15.11.2] methods for refer-

ence type T (as de�ned below) yields exactly one method entry. In this case,

the method call is annotated by pT

0

, which is the argument type of the most

speci�c method mn applicable according to the static types T of e and pT of p.

Thus any static overloading of the method name mn has been resolved and the

dynamic method lookup at run-time will be based on the signature (mn,pT

0

).

max spec :: prog) ref ty) sig)((ref ty�mhead) � ty) set

appl methds :: prog) ref ty) sig)((ref ty �mhead) � ty) set

mheads :: prog) ref ty) sig) (ref ty �mhead) set

more spec :: prog) (ref ty�mhead) � ty) (ref ty�mhead) � ty) bool

max spec � T sig

def

= fm j m 2appl methds � T sig ^

(8m

0

2appl methds � T sig.

more spec � m

0

m �! m

0

= m)g

appl methds � T (mn, pT)

def

= f(m,pT

0

) j m 2 mheads � T (mn, pT

0

) ^

� ` pT�pT

0

g

mheads � NullT = �sig. fg

mheads � (IfaceT I) = imethds � I

mheads � (ClassT C) = o2s � option map (�(d,(h,b)).(d,h)) � cmethd � C

mheads � (ArrayT T) = �sig. fg

more spec � ((md,mh),pT) ((md

0

,mh

0

),pT

0

)

def

= � ` RefT md�RefT md

0

^

� ` pT�pT

0

where

option map :: (�) �)) (� option) � option)

option map f

def

= �y. case y of None) None j Some x) Some (f x)

16

The well-typedness of our example code test is derived as given below. For formatting reasons, the derivation tree is cut at several

positions, whereby the positions are marked with the labels of the cut subtrees. Irrelevant values in formulas are replaced by .

We use the following abbreviations:

� = tprg

� = empty[e7!Class Base]

SNP = SXcpt NullPointer

During the derivation, the schematic variable ?pT

0

is instantiated with Class Base, as a result of the function max spec.

� e = Some (Class Base) is type � (Class Base)

(� ,�) ` e::Class Base e 6= this

is class � Ext

(� ,�) ` new Ext::Class Ext � ` Class Ext�Class Base

(� ,�) ` (e:=new Ext)::

(� ,�) ` Expr(e:=new Ext)::3

(LAss)

� e = Some (Class Base) is type � (Class Base)

(� ,�) ` e::Class Base

typeof (�a. None) Null = Some NT

(� ,�) ` Lit Null::NT

max spec � (ClassT Base) (foo, NT) =

f((, , Class Base), ?pT

0

)g

(� ,�) ` (e.foo(f?pT

0

gLit Null))::Class Base

(� ,�) ` Expr(e.foo(f?pT

0

gLit Null))::3

(Call)

�[x7!Class SNP] x = Some (Class SNP) is type � (Class SNP)

(� , �[x7!Class SNP]) ` x::Class SNP � ` Class SNP�Class (SXcpt Throwable)

(� , �[x7!Class SNP]) ` throw x::3

(Throw)

(LAss)

(Call) � ` Class SNP�Class (SXcpt Throwable) � x = None (Throw)

(� ,�) ` try Expr(e.foo(f?pT

0

gLit Null)) catch(SNP x) (throw x)::3

(� ,�) ` Expr(e:=new Ext); try Expr(e.foo(f?pT

0

gLit Null)) catch(SNP x) (throw x)::3

1
7

4.3 Well-formedness

A program must satisfy a number of well-formedness conditions concerning

global properties of all declarations. The conditions are expressed as predicates

on �eld, method, interface, class, and whole program declarations.

wf fdecl :: prog) fdecl) bool

wf mhead :: prog) sig �mhead) bool

wf mdecl :: prog) tname) mdecl) bool

wf idecl :: prog) idecl) bool

wf cdecl :: prog) cdecl) bool

wf prog :: prog) bool

A �eld declaration is well-formed i� its type exists:

wf fdecl � (fn,ft)

def

= is type � ft

A method declaration is well-formed only if its argument and result types

are de�ned and the name of the parameter is not this. Additionally, if the

declaration appears in a class, the names of the local variables must be unique

and may not contain the special name this nor hide the parameter, all types

of the local variables must exist, the method body has to be well-typed (in

the static context of its parameter type and the current class), and its result

expression must have a type that widens to the result type:

wf mhead � ((mn,pT),(pn,rT))

def

= is type � pT ^ is type � rT ^ pn 6= this

wf mdecl � C ((mn,pT),(pn,rT),lvars,blk,res)

def

=

let ltab = table of lvars; E = (� ,ltab[this7!Class C][pn 7!pT])

in wf mhead � ((mn,pT),(pn,rT)) ^

unique lvars ^ ltab this = None ^ ltab pn = None ^

(8(vn,T)2set lvars. is type � T) ^

E ` blk::3 ^ 9T. E ` res::T ^ � `T� rT

Even more complex conditions are required for well-formed interface and class

declarations. The name of a well-formed interface declaration is not a class name.

All superinterfaces exist and are not subinterfaces at the same time. All methods

newly declared in the interface are named uniquely and are well-formed. Further-

more, any method overriding a set of methods de�ned in some superinterfaces

has a result type that widens to all their result types:

wf idecl � (I,(is,ms))

def

= : is class � I ^

(8J2set is. is iface � J ^ : � ` J�

i

I) ^

unique ms ^ (8m2set ms. wf mhead � m ^

let mtab = Un tables ((�J. imethds � J)\ set is) in

(o2s � table of ms) hidings mtab entails

(�(pn,rT) (m,(pn

0

,rT

0

)). � ` rT�rT

0

)

18

Similarly, the name of a well-formed class declaration is not an interface

name. All implemented interfaces exist, and for any method of such an interface,

the class provides an implementing method with a possibly narrower return type.

All �elds and methods newly declared in the class are named uniquely and are

well-formed. If the class is not Object, it refers to an existing superclass, which

is not a subclass of the current class. Furthermore, any method overriding a

method of the superclass has a compatible result type:

wf cdecl � (C,(sc,si,fs,ms))

def

= : is iface � C ^

(8I2set si. is iface � I ^

8s. 8(m

1

,(pn

1

,rT

1

)) 2 imethds � I s.

9m

2

pn

2

rT

2

b. cmethd � C s = Some (m

2

,(pn

2

,rT

2

),b) ^

� ` rT

2

�rT

1

) ^

unique fs ^ (8f 2set fs. wf fdecl � f) ^

unique ms ^ (8m2set ms. wf mdecl � C m) ^

(case sc of None) C = Object

j Some D) is class � D ^ : � `D�

c

C ^

table of ms hiding cmethd � D entails

(�((pn

1

,rT

1

),b) (m,((pn

2

,rT

2

),b

0

)). � ` rT

1

�rT

2

)

Finally, all interfaces and classes declared in a well-formed program are

named uniquely and are in turn well-formed. For uniformity, this includes the

prede�ned class declarations of Object and the (
at) hierarchy of system excep-

tions.

ObjectC

def

= (Object , (None , [], [], []))

SXcptC xn

def

= let sc = if xn=Throwable then Object else SXcpt Throwable in

(SXcpt xn, (Some sc, [], [], []))

wf prog �

def

= let is = set (fst �); cs = set (snd �)

in ObjectC 2 cs ^ 8xn. SXcptC xn 2 cs ^

unique (fst �) ^ 8i2is. wf idecl � i) ^

unique (snd �) ^ 8c2cs. wf cdecl � c)

Our example program tprg is well-formed. Here is a heavily abstracted deriva-

tion tree of our proof of this fact.

wf mdecl tprg Base ((foo, Class Base),

(x, Class Base), [], Skip, x) :(tprg ` Object�

c

Base)

wf cdecl tprg BaseC

wf mdecl tprg Ext ((foo, Class Base),

(x, Class Ext), [], Expr (fClassT Extg(Class Ext)

x.vee:=Lit (Intg 1)), Lit Null) :(tprg `Base�

c

Ext)

wf cdecl tprg BaseC

wf cdecl tprg BaseC wf cdecl tprg ExtC Base 6= Ext

wf tprg tprg

19

4.4 Operational semantics

We formalize the semantics of Java in operational style with evaluation rules.

This is the natural choice since the language speci�cation itself is given in an

operational evaluation-oriented style, which allows for a direct formalization and

its straightforward validation. Furthermore, a denotational semantics would re-

quire much more di�cult mathematical tools, and an axiomatic semantics would

be problematic to validate and to use for reasoning on the language as a whole.

We prefer an evaluation semantics to a transition semantics in order to obtain

a concise description, because we consider a transition semantics less readable

and rather low-level, which in particular holds for a formulation as an Abstract

State Machine (ASM) like in [BS98].

In this section, we describe the notions of a state and its components and

give the evaluation rules for statements and expressions.

State A state consists of an optional exception (of type xcpt), a heap, and a

current invocation frame, which is the values of the local variables (including

method and exception parameters and the this pointer):

state = (xcpt)option � st

st = heap � locals

heap :: st) heap

def

= �(h,l). h

locals :: st) locals

def

= �(h,l). l

Remember that tuples associative to the right, so if for some state � we have an

equation like � = (x, �

0

), then x is the (optional) exception component alone,

while the second projection �

0

of the state has (tuple) type st, i.e. represents a

\small" state excluding the exception entry.

An exception is a reference to an instance of some exception class, which is a

subclass of Throwable. Normally, when an exception is thrown, a fresh exception

object is allocated and its location returned to represent the exception. But in the

case of system exceptions, we defer their allocation (and just record their names)

until an enclosing catch block references it. This helps to avoid the subtleties

of (conditional) side e�ects on the heap and out-of-memory conditions. Thus we

model exceptions as follows.

xcpt = XcptLoc loc

j SysXcpt xname

A heap maps locations to objects, while local variables map names to values:

heap = (loc , obj)table

locals = (ename, val)table

In our model there is no need to explicitly maintain a stack of invocation frames

containing local variables and return addresses for method calls. In this way we

also abstract over the �niteness of stack space. On the other hand, we explicitly

model the possibility of memory allocation on the heap to fail if there is no free

location (i.e. some a with (heap �) a = None) available. Memory allocation is

loosely, yet deterministically, de�ned by the function

20

new Addr :: heap) (loc � (xcpt)option)option

new Addr h

def

= "y. (y = None ^ (8a. h a 6= None)) _

(9a x. y = Some (a,x) ^ h a = None ^

(x = None _ x = Some (SysXcpt OutOfMemory)))

This function fails, i.e. returns None, i� there is no free location on the heap,

and otherwise gives an unused location. At the latest when there is only one free

address left, it returns an OutOfMemory exception. In this way it is guaranteed

that when an OutOfMemory exception is thrown for the �rst time, there is a

free location on the heap to allocate it. Note that we do not consider garbage

collection.

An object is either a class instance, modeled as a pair of its class name and a

table mapping pairs of a �eld name and the de�ning class to values, or an array,

modeled as a pair of its component type and a table mapping integers to values:

�elds = (ename � ref ty, val)table

components = (int , val)table

obj = Obj tname �elds

j Arr ty components

the Obj :: (obj)option) tname� �elds

the Arr :: (obj)option) ty� components

obj ty :: obj) ty

the Obj (Some (Obj C fs)) = (C,fs)

the Arr (Some (Arr T cs)) = (T,cs)

obj ty (Obj C fs) = Class C

obj ty (Arr T cs) = T[]

Using obj ty we de�ne the predicate � ,� ` v �ts T, meaning that in the con-

text of � and state �, the value v is assignable to a variable of type T. This

proposition, which is computed at run-time for type casts and array assignments,

is a weaker version of the notion of conformance introduced in x5.3.

, ` �ts :: prog) st) val) ty) bool

� ,� ` v �ts T

def

= (9pt. T = PrimT pt) _ v = Null _

� ` obj ty (the (heap � (the Addr v)))�T

There is a number of auxiliary functions for constructing and updating the

state, namely:

lupd[7!] :: ename) val) st) st

hupd[7!] :: loc) obj) st) st

x case :: xcpt option) st) st) state

lupd[v 7!x] (h,l)

def

= (h,l[v 7!x])

hupd[a7!obj] (h,l)

def

= (h[a7!obj],l)

x case x �

0

�

def

= (x, if x = None �

0

else �)

21

init vars :: (� � ty)list) (�,val)table

init Obj :: prog) tname) obj

init Arr :: ty) int) obj

init vars

def

= table of � map (�(n,T). (n,default val T))

init Obj � C

def

= Obj C (init vars (�elds � C))

init Arr T i

def

= Arr T (�j. if 0� j ^ j<i then Some (default val T)

else None)

raise if :: bool) xname) (xcpt)option) (xcpt)option

np :: val) (xcpt)option) (xcpt)option

raise if c xn xo

def

= if c ^ (xo = None) then Some (SysXcpt xn) else xo

np v

def

= raise if (v = Null) NullPointer

The de�nition of raise if deserves a comment: raise if c xn xo either propagates

an already thrown exception xo or raises the system exception xn if c is true.

As an application, np v checks for a null pointer access through the value v and

throws a NullPointer exception in this case, but any other exception that has

already occurred takes precedence.

Evaluation rule format Internally, the evaluation rules are given as mutu-

ally inductive sets of tuples. These sets de�ne relations, which we present as

predicates of the following form.

{ � ` � �c! �

0

:: prog) state) stmt) state) bool

means that the execution of statement c transforms state � into �

0

.

{ � ` � �e�v! �

0

:: prog) state) expr) val) state) bool

means that expression e evaluates to v, transforming � into �

0

.

Although de�ned as relations (for technical reasons), the semantics given below

can be shown to be functional, i.e. deterministic.

Strictly speaking it is not necessary to include an exception in the start state

of a computation. Similarly, an expression needs only return either a value or

an exception, but not both. However, the symmetry achieved by our slightly

redundant model simpli�es the rules considerably. In particular, we can avoid

case distinctions on whether exceptions occur in intermediate states, which would

cause the rules to be split. Suppose for example that � ` � �c! �

0

had the

signature prog) st) stmt) state) bool, i.e. all rules assume that there is

no exception in the start state. Then the rule(s) for sequential composition would

look like

� ` �

0

�c

1

! (None,�

1

); � ` �

1

�c

2

! �

2

� ` �

0

�c

1

; c

2

! �

2

� ` �

0

�c

1

! (Some xs,�

1

)

� ` �

0

�c

1

; c

2

! (Some xs,�

1

)

22

As a consequence of the design decisions just mentioned, there is exactly one

rule for each syntactic construct. Additionally there are general rules de�ning

that exceptions simply propagate when a series of statements is executed or a

series of expressions is evaluated:

� ` (Some xc,�) �c! (Some xc,�)

� ` (Some xc,�) �e�arbitrary! (Some xc,�)

All other rules can assume that in their concerning initial state no exception has

been thrown. For such states, we de�ne the abbreviation Norm �, which stands

for (None,�).

Execution of statements The rules for the statements not explicitly involving

exceptions are obvious:

� ` Norm � �Skip! Norm �

� `Norm �

0

�c

1

! �

1

; � ` �

1

�c

2

! �

2

� `Norm �

0

�c

1

; c

2

! �

2

� `Norm �

0

�e�v! �

1

� `Norm �

0

�Expr e! �

1

� `Norm �

0

�e�v! �

1

;

� ` �

1

�if the Bool v then c

1

else c

2

! �

2

� `Norm �

0

�if(e) c

1

else c

2

! �

2

� `Norm �

0

�if(e) (c; while(e) c) else Skip! �

1

� ` Norm �

0

�while(e) c! �

1

If no other exceptions have occurred while evaluating its argument and test-

ing for a null reference (using np), the throw statement copies the evaluated

location into the exception component of the state:

� `Norm �

0

�e�a

0

! (x

1

,�

1

); x

1

0

= np a

0

x

1

;

x

1

00

=(if x

1

0

=None then (Some (XcptLoc (the Addr a

0

))) else x

1

0

)

� `Norm �

0

�throw e! (x

1

00

,�

1

)

For the semantics of the try catch statement we have to distinguish

whether some exception is thrown and then caught by the catch clause or not.

In the �rst case, i.e. there is an exception of appropriate dynamic type to be

handled, the catch clause is executed with its exception parameter set to the

caught exception. In the second case the catch clause is skipped. Because of

technical limitations of the inductive de�nition package of Isabelle/HOL, even

in this case we have to provide an occurrence of the execution relation, which in

e�ect simply sets �

2

to (x

1

0

,�

1

0

).

� `Norm �

0

�c

1

! �

1

; � ` �

1

�salloc! (x

1

0

,�

1

0

);

case x

1

0

of None) �

1

00

= (x

1

0

,�

1

0

) ^ c

2

0

= Skip

j Some xc) let a = Addr (the XcptLoc xc) in

if � ,�

1

0

` a �ts Class tn

then �

1

00

= Norm (lupd[vn7!a]�

1

0

) ^ c

2

0

= c

2

else �

1

00

= (x

1

0

,�

1

0

) ^ c

2

0

= Skip;

� ` �

1

00

�c

2

0

! �

2

� ` Norm �

0

�(try c

1

catch(tn vn) c

2

)! �

2

23

On the one hand, the exception parameter of the catch clause must repre-

sent the exception thrown in the try block by a reference to its exception ob-

ject. As on the other hand we defer the allocation of system exceptions when

evaluating expressions, we have to ensure that even for such exceptions a suit-

able exception object is allocated on the heap of �

1

0

, replacing the SysXcpt

entry by an XcptLoc entry in x

1

0

. This is achieved by the auxiliary relation

� ` � �salloc! �

0

:: prog) state) state) bool. If no system exception has

been thrown, the relation behaves like the identity on the state, and otherwise

allocates an exception object and modi�es the state accordingly. Note that this

allocation step is impossible | and therefore program execution halts | if there

is no free address left.

� `Norm � �salloc! Norm �

� ` (Some (XcptLoc a),�) �salloc! (Some (XcptLoc a),�)

new Addr (heap �) = Some (a,x);

xobj = init Obj � (SXcpt (if x = None then xn else OutOfMemory))

� ` (Some (SysXcpt xn),�) �salloc! (Some (XcptLoc a),hupd[a7!xobj]�)

The finally statement is similar to the sequential composition, but executes

its second clause regardless whether an exception has been thrown in its �rst

clause or not. If an exception occurs in either clause, it is (re-)raised after the

statement, and if both parts throw an exception, the �rst one takes precedence.

� `Norm �

0

�c

1

! (x

1

,�

1

);

� `Norm �

1

�c

2

! (x

2

,�

2

);

x

2

0

= (if x

1

6= None ^ x

2

= None then x

1

else x

2

)

� `Norm �

0

�(c

1

finally c

2

)! (x

2

0

,�

2

)

Evaluation of expressions In contrast to the statement rules, almost all eval-

uation rules for expressions deserve some comments.

Creating a new class instance means picking a free address a and updating

the heap at that address with an object, the �elds of which are initialized with

default values according to their types. Note that the rule is not applicable |

and therefore execution halts | if new Addr fails.

new Addr (heap �) = Some (a,x)

� `Norm � �new C�Addr a! x case x (hupd[a7!init Obj � C]�) �

The same applies for the creation of a new array, where additionally an

exception is raised if the length of the array is negative:

� ` Norm �

0

�e�i

0

! (x

1

,�

1

); i = the Intg i

0

;

new Addr (heap �

1

) = Some (a,x);

x

1

0

= raise if (i<0) NegArrSize (if x

1

= None then x else x

1

)

� `Norm �

0

�new T[e]�Addr a! x case x

1

0

(hupd[a7!init Arr T i]�

1

) �

1

24

A type cast merely returns its argument value, but raises an exception if the

dynamic type happens to be unsuitable:

� `Norm �

0

�e�v! (x

1

,�

1

);

x

1

0

= raise if(: � ,�

1

` v �ts T) ClassCast x

1

� `Norm �

0

�(T)e�v! (x

1

0

,�

1

)

The type comparison operator checks if the type of its argument is assignable

to the given reference type:

� `Norm �

0

�e�v! �

1

;

b = (v 6=Null ^ � ,snd �

1

` v �ts RefT T)

� `Norm �

0

�e instanceof T�Bool b! �

1

The result of a literal expression is simply the given value:

� `Norm � �Lit v�v! Norm �

An access to a local variable (or the this pointer) reads from the local state

component:

� `Norm � �vn�the (locals � vn)! Norm �

An assignment to a local variable updates the state, unless the evaluation of

the subexpression raises an exception:

� ` Norm �

0

�e�v! (x,�

1

);

�

1

0

= (if x = None then lupd[vn7!v] �

1

else �

1

)

� ` Norm �

0

�vn:=e�v! (x,�

1

0

)

A �eld access reads from a �eld of the given object, taking into account

the type annotation which yields the de�ning class of the �eld as determined

statically. It also checks for null pointer access.

� `Norm �

0

�e�a

0

! (x

1

,�

1

);

v = the (snd (the Obj (heap �

1

(the Addr a

0

))) (fn,T))

� `Norm �

0

�fTge.fn�v! (np a

0

x

1

,�

1

)

A �eld assignment acts accordingly:

� ` Norm �

0

�e

1

�a

0

! (x

1

,�

1

); a = the Addr a

0

;

� ` (np a

0

x

1

,�

1

) �e

2

�v ! (x

2

,�

2

);

(c,fs) = the Obj (heap �

2

a); obj = Obj c (fs[(fn,T):=v])

� ` Norm �

0

�(fTge

1

.fn:=e

2

)�v! x case x

2

(hupd[a7!obj]�

2

) �

2

An array access reads a component from the given array, but raises an ex-

ception if the index is invalid:

� `Norm �

0

�e

1

�a

0

! �

1

; � ` �

1

�e

2

�i

0

! (x

2

,�

2

);

vo = snd (the Arr (heap �

2

(the Addr a

0

))) (the Intg i

0

);

x

2

0

= raise if (vo = None) IndOutBound (np a

0

x

2

)

� ` Norm �

0

�e

1

[e

2

]�the vo! (x

2

0

,�

2

)

25

Similarly, an array assignment updates the appropriate component, but �rst

has to check the type of the value to be assigned. Note one subtle di�erence to

�eld assignment: null pointer access is checked after evaluating the right-hand

side, whereas in �eld assignment the check occurs immediately after calculating

the reference.

� `Norm �

0

�e

1

�a

0

! �

1

; a = the Addr a

0

;

� ` �

1

�e

2

�i

0

! �

2

; i = the Intg i

0

;

� ` �

2

�e

3

�v ! (x

3

,�

3

);

(T,cs) = the Arr (heap �

3

a); obj = Arr T (cs[i7!v]);

x

3

0

= raise if (: � ,�

3

` v �ts T) ArrStore (

raise if (cs i = None) IndOutBound (np a

0

x

3

))

� `Norm �

0

�(e

1

[e

2

]:=e

3

)�v! x case x

3

0

(hupd[a7!obj]�

3

) �

3

The most complex rule is the one for method invocation: after evaluating

e to the target location a

0

and p to the parameter value pv, the block blk and

the result expression res of method mn with argument type T are extracted

from the program � (using the dynamic type dynT of the object stored at a

0

).

For simplicity, we require local variables to be initialized with default values,

as the expensive rules for \de�nite assignment" [GJS96, Ch. 16] merely enable

the run-time optimization that variables need not be initialized before being

explicitly assigned to. After executing blk and res in the new invocation frame

built from the local variables, the parameter pv and a

0

as the value of this, the

old invocation frame is restored and the result value v returned:

� `Norm �

0

�e�a

0

! �

1

;

� ` �

1

�p�pv! (x

2

,�

2

);

dynT = fst (the Obj (heap �

2

(the Addr a

0

)));

(md,(pn,rT),lvars,blk,res) = the (cmethd � dynT (mn,pT));

� ` (np a

0

x

2

,(heap �

2

,init vars lvars[this7!a

0

][pn 7!pv])) �blk! �

3

;

� ` �

3

�res�v ! (x

4

,�

4

)

� `Norm �

0

�(e.mn(fpTgp))�v! (x

4

,(heap �

4

,locals �

2

))

Note that all rules are de�ned carefully in order to be applicable even in not

type-correct situations. For example, in any context where a value v is expected

to be an address, we do not use a premise like v = Addr a as this will disable the

rule if v happens to be, for example, a null pointer or a Boolean value. Instead,

we use an expression like a = the Addr v, which will yield an arbitrary value if

v is not an address, yet will leave the rule applicable. In such cases we could

not prove anything useful about a, but during the type soundness proof itself

it emerges that for well-formed programs (and statically well-typed statements

and expressions) such situations cannot occur. A \defensive" evaluation throw-

ing some arti�cial exception in case of type mismatches, which would require

additional overhead, is therefore not necessary.

26

Below we give a derivation for the execution of our example code test, under the assumptions new Addr empty = Some (a, None)

and 8obj. new Addr (empty[a 7!obj]) = Some (b, None), which guarantee that there are at least two free locations on the heap.

We use the following abbreviations:

� = tprg

NP = NullPointer

blk = Expr(fClassT Extg(Class Ext)x.vee:=Lit (Intg 1))

obj1 = Obj Ext (empty[(vee, ClassT Base)7!Bool False]

[(vee, ClassT Ext)7!Intg 0])

obj2 = Obj (SXcpt NP) empty

h = empty[a 7!obj1]

l = empty[e7!Addr a]

Given only the start state �

0

, all other states are computed

during the derivation, which results in the sequence

�

0

= Norm (empty , empty)

�

1

= Norm (h , l)

�

2

= Norm (h , empty[this 7!Addr a][x7!Null])

�

3

= (Some (SysXcpt NP), h , empty[this 7!Addr a][x7!Null])

�

4

= (Some (SysXcpt NP), h , l)

�

5

= (Some (XcptLoc b), h[b7!obj2], l)

�

6

= Norm (h[b7!obj2], l[x7!Addr b])

�

7

= (Some (XcptLoc b), h[b7!obj2], l[x7!Addr b])

� ` �

2

�x�Null! �

2

� ,snd �

2

`Null �ts Class Ext

� ` �

2

�(Class Ext)x�Null! �

2

�

3

= (Some (SysXcpt NP), snd �

2

) � ` �

3

�Lit (Intg 1)� ! �

3

� ` �

2

� (fClassT Extg(Class Ext)x.vee:=Lit (Intg 1))� ! �

3

� ` �

2

�Expr(fClassT Extg(Class Ext)x.vee:=Lit (Intg 1)) ! �

3

(Blk)

� ` �

1

�e�Addr a! �

1

� ` �

1

�Lit Null�Null! �

1

cmethd � Ext (foo, Class Base) = Some (, (x,), [], blk, Lit Null)

�

2

= Norm (h, empty[this 7!Addr a][x7!Null]) (Blk) � ` �

3

�Lit Null� ! �

3

� ` �

1

� (e.foo(fClass BasegLit Null))� ! �

4

� ` �

1

�Expr(e.foo(fClass BasegLit Null)) ! �

4

(Call

0

)

� ` �

6

�x�Addr b! �

6

�

7

= (Some (XcptLoc b), snd �

6

)

� ` �

6

�throw x! �

7

(Throw)

new Addr empty = Some (a, None)

� ` �

0

�new Ext�a! Norm (h, empty)

� ` �

0

� (e:=new Ext)� ! �

1

� ` �

0

�Expr(e:=new Ext) ! �

1

(Call

0

)

new Addr h = Some (b, None)

� ` �

4

�salloc! �

5

� ,snd �

5

` Addr b �ts Class (SXcpt NP) (Throw)

� ` �

1

�(try Expr(e.foo(fClass BasegLit Null)) catch((SXcpt NP) x) (throw x))! �

7

� ` �

0

�(Expr(e:=new Ext); try Expr(e.foo(fClass BasegLit Null)) catch((SXcpt NP) x) (throw x))! �

7

2
7

5 The proof of type soundness

In this section we discuss our type soundness theorem together with its cru-

cial lemmas. As we spent almost half of the proof e�ort deriving properties

of the type relations and the structure of well-formed programs, we dedicate to

them subsections of their own before introducing helpful notions concerning type

soundness, the main theorem itself, and interesting corollaries.

It is not surprising that many of them are similar to those given by Drosso-

poulou and Eisenbach [DE98] since the necessity of certain lemmas emerges quite

naturally. On the other hand, the proof principles we use are sometimes rather

di�erent from those outlined in their earlier paper [DE97], some of which were

inadequate.

5.1 Lemmas on the type relations

There are two non-trivial lemmas concerning the type relations of Bali, namely

the well-foundedness wf of the converse subinterface and subclass relations

wf prog � �! wf (�(J ,I). � ` I �

i

J)

^ wf (�(D,C). � `C�

c

D)

and the frequently used transitivity of the widening relation:

wf prog � ^ � ` S�U ^ � `U�T �! � ` S�T

The two relations are well-founded because they are �nite and acyclic, where

the former is a consequence of representing class and interface declarations as

lists, and the latter follows from the irre
exivity of the relations, which in turn

follows from the well-formedness of the classes and interfaces implied by the

well-formedness of the whole program.

The well-foundedness facts are necessary for deriving the recursion equations

for the functions that traverse the type hierarchy of a program (see x4.1) and

also give rise to induction principles for the (direct) subinterface and subclass

relations, e.g. the rule

wf prog � ; P Object;

8C D. C 6= Object ^ � ` C�

1

c

D ^ . . . ^ P D �! P C

8E. is class � E �! P E

means that for a well-formed program, if some property hold for class Object

and is preserved by the direct subclass relation, it holds for all classes.

Most lemmas, as well as auxiliary properties for deriving them, typically rely

on several well-formedness conditions and are usually proved by rule induction

on the type relation involved, or by applying the induction principles just men-

tioned. For example, the transitivity of ` � is proved by rule induction on

the widening relation. It requires a well-formed program because it uses the

properties that every class widens to Object and that Object has neither a

superclass nor a superinterface.

28

5.2 Lemmas on �elds and methods

For the type-safety of �eld accesses and method calls, characteristic lemmas

concerning the �eld lookup and method lookup are required. They are used to

relate the (static) types of �elds and methods, as determined at compile-time,

to the actual (dynamic) types that occur at run-time.

For example, �elds correctly referred to at compile-time must be found at run-

time. More formally, if a �eld access fTge.fn, where e is of type Class C, statically

refers to a �eld of type fT de�ned in the reference type T, then within an instance

of some class C

0

, which may be a subclass of C, the �eld can be (dynamically)

referred to using the same name and its de�ning class. In particular, there is no

dynamic binding for �elds. This fact requires the following lemma:

wf prog � ^ c�eld � C fn = Some (T,fT) ^ � ` Class C

0

�Class C �!

table of (�elds � C

0

) (fn,T) = Some fT

Concerning method calls, a similar requirement preventing `method not un-

derstood' errors can be formalized: if a method call of the form e.mn(fpTgp)

with E ` e::RefT T refers to a method that is statically available for the reference

e, the dynamic lookup of the object pointed at by e should yield a method with

a compatible result type. The lemma that helps to establish this behavior reads

as follows: for a well-formed program, a reference type T, and any class type T

1

that widens to T, if T (statically) supports a method with a given signature,

then the (dynamic) type T

1

supports a method with the same signature and

whose result type widens to the result type of the �rst method:

wf prog � ^ (m

1

,(pn

1

,rT

1

)) 2 mheads � T sig ^ � ` Class T

1

�RefT T �!

9m

2

pn

2

rT

2

b. cmethd � T

1

sig = Some (m

2

,(pn

2

,rT

2

),b) ^ � ` rT

2

�rT

1

The proofs of these lemmas are lengthy and require many auxiliary theorems

that are proved by induction on the direct subclass relation, by case splitting on

the right-hand argument of the widening relation and by rule induction on the

subinterface, subclass, and implementation relation.

5.3 Type soundness

Finally, we state and prove the type soundness theorem. We motivate how we

express type soundness, comment on the proof of the main theorem, and discuss

it consequences.

Goal Type soundness is a relation between the type system and the semantics

of a language meaning that all values produced during any program execution

respect their static types. This can be formulated as a preservation property:

For all state transformations caused by executing a statement or evaluating an

expression, if in the original state the contents of all variables \conform" to their

respective types, this holds also for any �nal state. Additionally, if an expression

yields some result, this value \conforms" to the type of the expression. Of course,

we can only expect all this to hold if we assume a well-formed program and well-

typed statements and expressions.

29

It remains to specify what we mean exactly by `conforms', which is inspired

by [DE98]. Relative to a given program � and a state �, a value v conforms

to a type T, written � ,� ` v::T, i� the dynamic type of v widens to T. Via

two auxiliary conformance concepts, this can be lifted to the notion of a whole

state � conforming to an environment E. The proposition � ::�E means that

the value of any accessible variable within the state is compatible with its static

type. Formally, these four concepts

{ , ` ::� :: prog) st) val) ty) bool

of a value conforming to a type,

{ , ` [::�] :: prog) st) (�,val)table) (�,ty)table) bool

of all values in a table conforming to their respective types,

{ , ` ::� 3 :: prog) st) obj) bool

of all components of an object conforming to their respective types, and

{ ::� :: state) env) bool

of a state conforming to an environment

are de�ned as follows:

� ,� ` v ::� T

def

= let dyn ty = option map obj ty � heap �

in 9T

0

. typeof dyn ty v = Some T

0

^ � ` T

0

�T

� ,� ` vs[::�]Ts

def

= 8n T. Ts n = Some T �!

(9v. vs n = Some v ^ � ,� ` v ::�T)

� ,� `Obj C fs ::� 3 = � ,� ` fs[::�]table of (�elds � C

� ,� ` Arr T cs ::� 3 = � ,� ` cs[::�]option map (�i. T) � cs

(x,�) ::� (� ,�)

def

= � ,� ` locals �[::�]� ^

(8a obj. heap � a = Some obj �! � ,� ` obj ::� 3) ^

(8a. x = Some(XcptLoc a) �! � ,� ` Addr a ::�Class(SXcpt Throwable))

The expression (option map obj ty � heap �) a calculates the dynamic type of

the object (if any) at address a on the heap. Note that the conformance relation is

de�ned such that it does not take into account inaccessible variables, i.e. values

that occur in the state but not in the corresponding component of the static

environment. Among others, this frees us from explicitly deallocating exception

parameters after a catch clause.

With the help of the notions just introduced, we can express the propositions

we aim to prove as follows. In the context of a well-formed program, the execution

of a well-typed statement transforms a state conforming to the environment into

another state that again conforms to the environment:

E = (� ,�) ^ wf prog � ^ E ` s::3 ^ � ::�E ^ � ` � �s! �

0

�! �

0

::�E

Analogously, the evaluation of a well-typed expression preserves the conformance

of the state to the environment where, unless an exception has occurred, the value

of the expression conforms to its static type:

E = (� ,�) ^ wf prog � ^ E ` e::T ^ � ::�E ^ � ` � �e�v! (x

0

,�

0

) �!

(x

0

,�

0

) ::�E ^ (x

0

= None �! � ,�

0

` v ::�T)

The validity of these two formulas will result as trivial corollaries from the

main theorem, given next.

30

Main theorem and proof To prove the intended type soundness theorems

given above, we utilize rule induction on the derivation on the execution of

statements and the evaluation of expressions. As these depend on each other, we

must deal with statements and expressions simultaneously. In addition, in order

to obtain a suitable induction hypothesis, we have to strengthen the propositions

by adding the auxiliary \heap extension" predicate � (de�ned below) and

introducing universal quanti�cations explicitly at several positions. As a result,

the main theorem looks quite formidable, yet we attempt to cast it into words:

wf prog � �!

(� ` (x,�) �c ! (x

0

,�

0

) �!

8�. (x,�) ::� (� ,�) �!

(� ,�) ` c::3 �!

(x

0

,�

0

) ::� (� ,�) ^ ���

0

^

(� ` (x,�) �e�v! (x

0

,�

0

) �!

8�. (x,�) ::� (� ,�) �!

8T. (� ,�) ` e::T �!

(x

0

,�

0

) ::� (� ,�) ^ ���

0

^ (x

0

= None �! � ,�

0

` v ::�T))

For a well-formed program � , if the execution of a statement transforms one

state into another then for all local environments �, if the the statement is well-

typed according to the environment (� ,�) and the �rst state conforms to it, so

does the second state, and the new heap is an extension of the old one. The same

holds for expressions, but additionally the value of the expression conforms to

its type, in case there is no exception.

The \heap extension" is a pre-order on states of type st) st) bool, where

���

0

means that any object existing on the heap of � also exists on �

0

and

has the same type there. (If we considered garbage collection, we would have

to restrict this proposition to accessible objects.) The heap extension property

holds for any transition of the operational semantics, which turns out to be

necessary in our inductive proof.

���

0

def

= 8a obj. heap � a = Some obj �!

9obj

0

. heap �

0

a = Some obj

0

^ obj ty obj

0

= obj ty obj

The proof of the main type soundness theorem is by far the heaviest. At the

top level, it consists of currently 21 cases, one for each evaluation rule, where

{ 8 cases can be solved rather directly (e.g. from the induction hypothesis),

{ 7 cases require just simple lemmas on the structure of the state, and

{ the remaining 6 cases require extensive reasoning on the characteristic prop-

erties of the constructs concerned.

Most of this reasoning is independent of the operational semantics itself and can

be tackled separately, which keeps the main proof manageable.

31

Consequences A corollary of type soundness is that method calls always ex-

ecute a suitable method, i.e. a `method not understood' run-time error is im-

possible. This property can be stated more formally: for a well-formed program

and a state that conforms to the environment, if an expression of reference type

(which plays the role of the target expression for the method call considered)

evaluates without an exception to a non-null reference, and if for that (static)

type and a given signature a method is available, the dynamic method lookup

for the same signature according to the class instance pointed at by the reference

value yields a proper method body:

E = (� ,�) ^ wf prog � ^ E ` e::RefT T ^ � ::�E ^ � ` � �e�a

0

! Norm �

0

^

a

0

6= Val Null ^ dynT = fst (the Obj (heap �

0

(the Addr a

0

))) ^

mheads � T sig 6= fg �! 9m. cmethd � dynT sig = Some m

This implies that in a well-formed context, in every instance of the evaluation

rule for method calls, the function cmethd returns a proper method body.

As it stands, the type soundness theorem does not directly say anything about

non-terminating computations, which might lead to the conclusion that it is

useless for the type-safety of reactive systems and looping programs. Fortunately,

the theorem guarantees type-safety even in such cases if one accepts the following

meta-level reasoning. An in�nite computation can be interrupted after any �nite

number of computation steps, for example by introducing a counter of steps

and raising an exception when a given value has been reached. The theorem

implies that the state resulting from interrupting the computation after any �nite

number of statements executed conforms to the environment. Together with

the fact that there is no single non-terminating statement, the whole (in�nite)

computation can be concluded to be type-safe.

In addition to the evaluation semantics, we plan to de�ne a transition seman-

tics and prove both styles equivalent (for �nite computations). The transition

semantics will be less concise and abstract, but allows type soundness to be

formulated as a subject reduction property, which is more natural for in�nite

computations. More importantly, it seems to be unavoidable to describe concur-

rency (and I/O).

6 Experience and statistics

Recalling our design goals stated at the end of x2, we comment how far we have

reached them and share some of the lessons learned during the project.

Faithfulness to the o�cial language speci�cation HOL's expressiveness

enables us to formalize the Java speci�cation quite naturally and directly,

without facing any severe obstacles. There is almost a one-to-one correspon-

dence between the concepts given in the speci�cation and those de�ned in

Bali. As far as we could tell, all the messy well-formedness conditions in-

herited from the language speci�cation are actually needed somewhere in

the proofs. This inspires con�dence in the adequacy of both the speci�cation

and our formalization.

32

We do not yet have tools for automatically generating executable code from

our theories, which would be an additional help in validating our formaliza-

tion. The importance of such a mechanism became very obvious when we

uncovered a mistake in our formalization (which was not present in [NO98]

but was introduced by modi�cations) when symbolically executing the ex-

ample in this article in Isabelle: the list returned by function �elds was in

reverse order. Although the type soundness proof itself was an excellent de-

bugging mechanism which caught many minor and some major mistakes, it

failed to detect the wrong order because type soundness is independent of

the order in which �elds are inherited. In the original language speci�cation

we did not �nd any signi�cant errors, but some omissions and unneeded

restrictions, which we lifted.

Succinctness and simplicity Our policy to restrict the number of features

considered and to make straightforward simpli�cations that do not diminish

the expressiveness of the language has lead to a clear and straightforward

formalization. Mix�x syntax and mathematical fonts as o�ered by Isabelle

also contribute greatly to moderately readable de�nitions and theorems.

The facility to conduct concise proofs strongly depends on the formal-

ization. In our case, the use of the (also more elegant) evaluation semantics

saved us from a lot of trouble, while the intricacies of a transition semantics

faced by Drossopoulou and Eisenbach [DE97] lead to several mistakes that

were �nally corrected during Syme's machine-checked proof [Sym97b], but

at the expense of additional concepts.

Maintainability and extendibility Unless the language changes drastically,

modi�cations tend to be of a local nature, but only if both the formalization

and the proofs are reasonably structured. As always, modularity is the key

issue. But when the formalization is extended, even well-structured proofs

need to be modi�ed, which remains a tedious job. Higher-level proof scripts

and more automation are some of the answers. A dedicated mechanism for

change management exploring and �xing the impact of modi�cations would

also help.

We are reasonably happy with the modularity of our work. For instance,

Martin B�uchi [BW98] has adpoted the formalization (including the proofs),

extended it to handle compound types, and proved the type-safety of the

augmented language, all of which worked very smoothy.

Adequacy for the theorem prover Theorem provers are notoriously sensi-

tive to the precise formulation of de�nitions and theorems. Thus the two

goals of maximal automation of proofs and maximal abstractness of de�ni-

tions are sometimes in con
ict. In a number of cases this meant that although

we could start with an abstract de�nition, we had to derive consequences

which were better suited for the available proof procedures. Although we

are far from satis�ed with the current status of Isabelle's proof procedures

(for example, the handling of assumptions during simpli�cation, or the ne-

cessity to expand tuples and similar datatypes by hand), they are basically

adequate for the task at hand. Nevertheless, more automation is necessary

and feasible by extending the capabilities of Isabelle itself.

33

Statistics We spent two months (estimated net time) developing and maintain-

ing our formalization, and the Isabelle theory �les produced add up to about

1200 lines of well-documented de�nitions. To conduct and maintain the type

soundness proof with all necessary lemmas, it took us roughly three months of

work and about 2400 lines of proof scripts.

7 Conclusion

The reader has been exposed to large chunks of a formal language speci�cation

and a proof of type soundness and may need to be reminded of the bene�ts. Even

including the slight generalizations mentioned at the beginning of x4, we did not

discover a loop-hole in the type system. But we had not seriously expected this

either. So what have we gained over and above a level of certainty far beyond

any paper-and-pencil proof?

We view our work primarily as an investment for the future. For a start,

it can serve as the basis for many other mechanized proofs about Java, e.g. as

a foundation for the work by Dean [Dea97] or for compiler correctness. More

importantly, we see machine-checked proofs as an invaluable aid in maintaining

large language designs (or formal documents of any kind). It is all very well to

perform a detailed proof on paper once, but in the face of changes and extensions,

the reliability of such proofs begins to crumble. In contrast, we developed the

design incrementally, and Isabelle reminded us where proofs needed to be modi-

�ed. This has shown to be important, for example when we extended Bali with

full exception handling. It will continue to help us further: apart from adding

the last important Java features missing from Bali, e.g. threads, we also plan to

use Bali as a vehicle for experimental extensions of Java such as parameterized

types [MBL97,OW97,AFM97].

Despite our general enthusiasm for machine-checked language designs, a few

words of warning are in order:

{ Bali is still a half-way house: not a toy language any more, but missing

many details and some important features of Java.

{ The Java type system is, despite subclassing, simpler than that of your av-

erage functional language: whereas the type checking rules of Java are al-

most directly executable, the veri�cation of ML's type inference algorithm

against the type system requires a signi�cant e�ort [NN98]. The key compli-

cation there is the presence of free and bound type variables, which requires

complex reasoning about substitutions. VanInwegen [Van97] reports similar

di�culties in her formalization of the type system and the semantics of ML.

{ Theorem provers, and Isabelle is no exception, require a certain learning

e�ort due to the machine-oriented proof style. Recent moves towards a more

human-oriented proof style like Syme's DECLARE system [Sym97a] promise

to lower this hurdle. However, as Harrison [Har97] points out, both proof

styles have their merits, and we are currently investigating a combination.

34

In a nutshell: although machine-checked language designs for the masses are still

some way o�, this article demonstrates that they have de�nitely become a viable

option for the expert.

Acknowledgments We thank Sophia Drossopoulou, Donald Syme and Egon

B�orger for the very helpful discussions about their related work. We also thank

Wolfgang Naraschewski, Markus Wenzel, Andrew Gordon and several anony-

mous referees for their comments on earlier reports on our project.

References

[AFM97] Ole Agesen, Stephen N. Freund, and John C. Mitchell. Adding type param-

eterization to the Java language. In ACM Symp. Object-Oriented Program-

ming: Systems, Languages and Applications, 1997.

[BCM

+

93] Kim B. Bruce, Jon Crabtree, Thomas P. Murtagh, Robert van Gent, Allyn

Dimock, and Robert Muller. Safe and decidable type checking in an object-

oriented language. In Proc. OOPSLA'93, volume 18 of ACM SIGPLAN

Notices, pages 29{46, October 1993.

[BM88] Robert S. Boyer and J Strother Moore. A Computational Logic Handbook.

Academic Press, 1988.

[Bru93] Kim B. Bruce. Safe type checking in a statically-typed object-oriented pro-

gramming language. In Proc. 20th ACM Symp. Principles of Programming

Languages, pages 285{298. ACM Press, 1993.

[BS98] Egon B�orger and Wolfram Schulte. A programmer friendly modular de�ni-

tion of the dynamic semantics of Java. In Jim Alves-Foss, editor, Formal

Syntax and Semantics of Java, Lect. Notes in Comp. Sci. Springer-Verlag,

1998. Chapter 11 of this volume.

[BvGS95] Kim B. Bruce, Robert van Gent, and Angela Schuett. PolyTOIL: A type-

safe polymorphic object-oriented language. In W. Oltho�, editor, ECOOP

'95, volume 952 of Lect. Notes in Comp. Sci., pages 27{51. Springer-Verlag,

1995.

[BW98] Martin B�uchi and Wolfgang Weck. Java needs compound types. Tech-

nical Report 182, Turku Center for Computer Science, May 1998.

http://www.abo.�/~mbuechi/publications/CompoundTypes.html.

[Coh97] Richard M. Cohen. The defensive Java Virtual Machine speci�cation. Tech-

nical report, Computational Logic Inc., 1997. Draft version.

[Coo89] William Cook. A proposal for making Ei�el type-safe. In Proc. ECOOP'89,

pages 57{70. Cambridge University Press, 1989.

[DE97] Sophia Drossopoulou and Susan Eisenbach. Is the Java type system sound?

In Proc. 4th Int. Workshop Foundations of Object-Oriented Languages, Jan-

uary 1997.

[DE98] Sophia Drossopoulou and Susan Eisenbach. Java is type safe | probably. In

Jim Alves-Foss, editor, Formal Syntax and Semantics of Java, Lect. Notes

in Comp. Sci. Springer-Verlag, 1998. Chapter 3 of this volume.

[Dea97] Drew Dean. The security of static typing with dynamic linking. In Proc. 4th

ACM Conf. Computer and Communications Security. ACM Press, 1997.

[GJS96] James Gosling, Bill Joy, and Guy Steele. The Java Language Speci�cation.

Addison-Wesley, 1996.

35

[GM93] M.J.C. Gordon and T.F. Melham, editors. Introduction to HOL: a theorem-

proving environment for higher order logic. Cambridge University Press,

1993.

[Har97] John Harrison. Proof style. Technical Report 410, University of Cambridge

Computer Laboratory, 1997.

[MBL97] Andrew C. Myers, Joseph A. Bank, and Barbara Liskov. Parameterized

types for Java. In Proc. 24th ACM Symp. Principles of Programming Lan-

guages, pages 132{145, 1997.

[Mil78] Robin Milner. A theory of type polymorphism in programming. J. Comp.

Sys. Sci., 17:348{375, 1978.

[NN98] Wolfgang Naraschewski and Tobias Nipkow. Type inference veri�ed: Algo-

rithm W in Isabelle/HOL. In E. Gim�enez and C. Paulin-Mohring, editors,

Types for Proofs and Programs: Intl. Workshop TYPES '96, volume 1512

of Lect. Notes in Comp. Sci., pages 317{332. Springer-Verlag, 1998.

[NO98] Tobias Nipkow and David von Oheimb. Java

`ight

is type-safe | de�nitely.

In Proc. 25th ACM Symp. Principles of Programming Languages, pages

161{170. ACM Press, 1998.

[OW97] Martin Odersky and Philip Wadler. Pizza into Java: Translating theory into

practice. In Proc. 24th ACM Symp. Principles of Programming Languages,

pages 146{159, 1997.

[Pau94] Lawrence C. Paulson. Isabelle: A Generic Theorem Prover, volume 828 of

Lect. Notes in Comp. Sci. Springer-Verlag, 1994.

[Sli96] Konrad Slind. Function de�nition in higher order logic. In J. von Wright,

J. Grundy, and J. Harrison, editors, Theorem Proving in Higher Order Log-

ics, volume 1125 of Lect. Notes in Comp. Sci., pages 381{397. Springer-

Verlag, 1996.

[Sym97a] Donald Syme. DECLARE: A prototype declarative proof system for higher

order logic. Technical Report 416, University of Cambridge Computer Lab-

oratory, 1997.

[Sym97b] Donald Syme. Proving Java type soundness. Technical Report 427, Univer-

sity of Cambridge Computer Laboratory, 1997.

[Sym98] Donald Syme. Proving Java type soundness. In Jim Alves-Foss, editor,

Formal Syntax and Semantics of Java, Lect. Notes in Comp. Sci. Springer-

Verlag, 1998. Chapter 4 of this volume.

[Van97] Myra VanInwegen. Towards type preservation for core SML. University of

Cambridge Computer Laboratory, 1997.

36

Index

::, 3

def

=, 3

), 3

�, 4

j, 3

", 3

\, 4

[], 4

#, 4

� , 6

� , 8

�� , 8

[7!], 8

;, 10

() , 11

:= , 11

f g . , 11

f g . := , 11

[], 11

[]:= , 11

. (f g), 11

[], 12

` �

1

i

, 13

` �

1

c

, 13

` ;

1

, 13

` � , 13

` �

?

, 13

` ::3 , 14

` :: , 14

` � ! , 22

` �salloc! , 24

` � � ! , 22

, ` ::� , 30

, ` [::�] , 30

, ` ::� 3 , 30

::� , 30

� , 31

Addr, 11

appl methds, 16

ArrayT, 12

ArrStore, 6

Bool, 11

bool, 4

boolean, 12

cdecl, 6

c�eld, 16

Class, 12

class, 6

class, 9

ClassCast, 6

ClassT, 12

cmethd, 9

components, 21

default val, 12

empty, 8

EName, 6

ename, 6

ename0, 6

env, 14

Expr, 10

fdecl, 7

�eld, 7

�elds, 21

�elds, 9

finally, 10

�ts, 21

fst, 4

heap, 20

heap, 20

hiding entails, 8

hidings entails, 8

hupd, 21

idecl, 6

if else, 10

Iface, 12

iface, 6

iface, 9

IfaceT, 12

imethds, 9

IndOutBound, 6

init Arr, 22

init Obj, 22

init vars, 22

instanceof, 11

Int, 11

int, 4

int, 12

is class, 12

is iface, 12

is type, 12

lcl, 14

lenv, 14

list, 4

Lit, 11

locals, 20

locals, 20

lupd, 21

lvar, 7

map, 4

max spec, 16

mbody, 7

mdecl, 7

methd, 7

mhead, 7

mheads, 16

mname, 6

more spec, 16

NegArrSize, 6

new, 11

new Addr, 21

None, 4

np, 22

NT, 12

Null, 11

NullPointer, 6

NullT, 12

o2s, 4

obj, 21

obj ty, 21

Object, 6

ObjectC, 19

option, 4

option map, 16

OutOfMemory, 6

prg, 14

prim ty, 12

PrimT, 12

prog, 6

raise if, 22

ref ty, 12

RefT, 12

set, 4

set, 4

sig, 7

Skip, 10

snd, 4

Some, 4

st, 20

state, 20

stmt, 10

SXcpt, 6

SXcptC, 19

SysXcpt, 20

table, 8

table of, 8

tables, 8

the, 4

the Addr, 11

the Arr, 21

the Bool, 11

the Int, 11

the Obj, 21

this, 6

throw, 10

Throwable, 6

TName, 6

tname, 6

tname0, 6

try catch, 10

ty, 12

typeof, 15

Un tables, 8

unique, 8

Unit, 11

val, 11

void, 12

wf cdecl, 18

wf fdecl, 18

wf idecl, 18

wf mdecl, 18

wf mhead, 18

wf prog, 18

while, 10

x case, 21

xcpt, 20

XcptLoc, 20

xname, 6

38

